基于AMESim的装载机动臂势能回收系统研究
以17t装载机为研究对象,对装载机工作装置的动臂液压系统进行分析研究,提出一种带势能回收的装载机动臂液压系统,应用AMESim仿真软件建立了相应的仿真模型,通过与传统装载机动臂液压系统对比,并结合相应的仿真曲线,验证了设计方案的可行性。
储能液压缸协同驱动重型机械臂系统研究与优化
针对采用储能液压缸协同驱动重型机械臂升降来实现重力势能回收和利用的方法,研究了不同储能缸与驱动缸无杆腔面积比对系统节能效果的影响。分析了储能缸协同驱动回路控制动臂升降的工作原理,建立了系统的数学模型;以76 t液压挖掘机为例,在Simulation X中构建了整机的多学科联合仿真模型,并通过试验验证了模型的准确性。依据此模型对液压挖掘机空载和带载工况下,储能缸与驱动缸无杆腔面积比对系统能耗特性的影响进行优化仿真研究。仿真结果表明:在相同的工作周期,优化后储能缸协同驱动系统的液压泵输出能量约为732.0 kJ,较改进前节省能量约253.8 kJ,节能率由27.2%提高至46%,实现了节能效果的提高。
电动重型叉车工况自识别势能回收控制系统
针对电动重型叉车在轻载和重载举升时具有速度范围宽且蕴含丰富重力势能的特点,同时为避免单一大排量液压马达发电机在重载低速时对重力势能的回收效率较低的问题,提出一种基于双液压马达发电机的势能回收系统。所提出的势能回收系统包含2套液压马达发电机,依据操作手柄信号进行单/双液压马达发电机回收模式切换。讨论了举升油缸在带载下降时的工作模式决策规则和控制策略,并搭建了AMESim势能回收系统模型,对比分析了传统节流、单液压马达发电机、双液压马达发电机系统的举升油缸速度和无杆腔压力曲线,并通过样机试验验证了势能回收系统的节能性。试验结果表明,所提出的势能回收系统在大负载工况下具有较高的回收效率,可达74%;在不同货叉下降速度下,均可保持60%以上的回收效率。
基于蓄能器储能和综合调度叉车势能利用系统
随着导航控制和运动控制技术的成熟,越来越多的输送机器人用于工业生产中,大幅提升了工业生产自动化能力。输送机器人,往往以传统叉车为原型,通过智能调度和运动控制,完成生产搬运任务。但这种叉车系统,在往复提升和下放货物中,存在大量的物料势能浪费问题;而现有能量回收再利用方法,仅讨论了叉车举升系统能量回收和再利用性能,而未充分考虑单台叉车带载提升和带载下降并不是一个工作循环,导致能量回收系统应用较少。提出采用蓄能器回收叉车下放货物的势能,并通过自动调度系统协调,实现回收能量的再利用。该方法的推广,将大幅改善叉车系统能量效率,并减少电池供电叉车的充电次数,推动输送机器人绿色运行技术,推动行业技术进步。
非对称泵控系统势能回收理论研究
通过对非对称泵控差动缸系统势能回收效率进行研究,在理论分析的基础上建立势能回收过程的数学模型,分析蓄能器压力对能量回收效率的影响规律;建立势能回收系统的物理仿真模型,对势能回收过程进行仿真研究。结果表明:与普通气囊式蓄能器相比,采用恒压蓄能器进行能量回收可以避免在势能回收过程中,非对称泵从马达工况转化为泵工况而无法回收剩余能量;当负载为10 kN时,采用恒压蓄能器最大节能效率可达到29.8%。通过数值分析计算得到负载下降过
蓄能式挖掘机多油缸动臂势能回收利用方案设计
利用蓄能器充能及放能的工作原理,设计一种挖掘机多油缸动臂势能回收节能系统。实现在动臂下降时,动臂下降的势能储存在蓄能器中,动臂举升时,蓄能器释放能量推动动臂上升,实现液压挖掘机动臂势能回收循环利用,从而达到节能的目的。
液压提升装置重力势能回收系统的研究
针对液压提升装置下行过程中负载重力势能转化为热能耗散的问题,提出了一种新型的全液压势能回收系统。介绍了新型势能回收系统的结构和工作原理,并对势能回收系统中液压蓄能器、液压泵/马达及其变量机构的参数进行匹配。应用AMESim建立仿真模型,对系统的操控性能和势能回收效果进行仿真研究。结果表明,新型势能回收系统能够实现液压提升装置重力势能的回收,势能的回收效率随着负载的增大而提高,并逐渐趋于稳定。系统操控性能良好,能够控制液压提升装置以不同速度稳定下行,不受负载大小的影响。
液压挖掘机动臂液压系统的节能研究
在分析了液压系统常见的能耗问题的基础上以现有的某型号液压挖掘机动臂液压系统为研究对象设计了新型动臂势能回收系统并建立该系统的AMESim模型。通过仿真分析得出新液压系统的能源利用率比不采用任节能措施的液压系统提高了34.8%有良好的节能效果。
超大型液压挖掘机混合式动臂势能回收系统设计及仿真分析
由于工作装置和负载的质量巨大,超大型液压挖掘机动臂下放时大量势能经液压阀口转变成油液的热能,造成油液温度升高。对此,提出一种流量再生与蓄能器相结合的混合式动臂势能回收系统。该系统通过流量再生原理,使动臂液压缸无杆腔流量的一部分流入有杆腔,减少对液压泵的流量需求,降低系统对发动机的功率需求;同时,使用蓄能器和平衡缸相结合的方式回收工作装置的势能,并在动臂提升时实现回收能量的再利用,提高了系统的能量利用效率。建立了系统的仿真模型,对影响势能回收和能量利用效率的关键参数进行了研究分析。结果表明,混合式动臂势能回收方案具有较好的能量回收效果,节能效果显著。
液压挖掘机动臂自重液-气储能平衡方法研究
液压挖掘机在作业中动臂将高频次大范围举升和下降现有挖掘机无能量回收装置大量势能将在动臂下降时通过控制阀的节流作用浪费掉。为回收利用这部分浪费掉的能量对动臂自重液-气储能平衡方法进行研究在此基础上提出采用三腔液压缸直接转换利用挖掘机重力势能的系统原理。三腔液压缸是在原两腔液压缸基础上将双腔液压缸无杆腔分为两个容腔而构成其中一个容腔与蓄能器连接称为配重腔设置蓄能器压力与动臂自重基本平衡。研究中首先建立动臂驱动系统的能耗数学模型分析系统的能量特性;然后以20 t挖掘机为例建立整机的机电液联合仿真模型分析对比分别采用双腔液压缸系统和三腔液压缸系统动臂的运行特性和能耗特性;进一步构建试验测试平台验证所提系统的可行性和节能效果。结果表明新系统较双腔液压缸驱动系统重力势能