具有压差-位移检测装置的多路阀特性研究
相较负载敏感系统,采用泵阀协同压力流量复合控制系统时流量控制更加精准,系统压损更小。但采用压力传感器检测阀口前后压差、实时调节阀口开度来实现流量精准调节,当阀口压力高频波动时会引起阀芯振荡,从而导致压力冲击和流量不稳定。针对这种情况,提出一种提高系统阻尼比的压差-位移检测装置,实现在压力高频波动时抑制阀芯振荡以提高系统稳定性。利用AMESim软件建立电子压力补偿的控制系统模型并验证;建立具有该装置的控制系统仿真模型,通过仿真研究该装置对系统特性的影响。结果表明:该装置中的弹簧刚度、黏性阻尼系数、活塞质量对系统特性的影响依次减小;当负载频率小于50 Hz时,不采用压差-位移检测装置可以保证流量的稳定以及准确;当负载频率为50~80 Hz时,采用压差-位移检测装置的输出流量的波动减小了15%~30%;主阀芯的振荡减小了...
异形反馈槽对比例节流阀特性的影响
研究了不同反馈槽形状下Valvistor型比例节流阀的流量特性,为实现执行器多级流量控制提供参考。建立了比例节流阀数学模型和多学科联合仿真模型,并通过试验验证了模型的准确性。在此基础上,分析了不同反馈槽形状和参数对阀动静态特性的影响。结果表明:反馈槽形状不同,比例节流阀流量特性不同;当反馈槽形状为倒梯形时,阀初始流量增益小,有利于执行器平稳启动;当反馈槽形状为双矩形组合时,阀具有良好的微动控制特性;同时,比例节流阀响应速度随反馈槽面积增益的增大而变快,但较大面积增益和较小预开口量会降低阀的稳定性。
基于流固热耦合的负载敏感多路阀仿真研究
由于多路阀内部流量大、压力高,且流道结构复杂、节流温升大,会造成阀芯发生变形而引起卡滞现象,为此,对多路阀进行了流固热耦合数值模拟仿真研究。首先,利用AMESim和UG软件对负载敏感多路阀进行了建模;然后,利用ICEM对流体域及固体域进行了网格划分;最后,采用ANSYS Workbench平台,在不同工况下对多路阀进行了流固热耦合数值模拟仿真,分析了不同工况下多路阀流场内流体速度、压力分布、节流温升、气穴气蚀以及阀芯变形的情况。研究结果表明阀芯与油液接触的区域温度受影响较大,而远离油液的区域阀芯温度变化不明显,在油液温度影响下,阀芯上节流槽区域发生膨胀变形,说明节流温升对阀芯的影响主要集中在节流槽附近区域;当主阀口开口度较大,压力补偿器开度较小时,阀内易出现气穴,产生气蚀现象,节流槽处温升非常明显,阀芯变形量较大,容易引起...
三腔液压缸驱动装载机动臂运行特性仿真研究
装载机外负载变化频繁且波动范围大,动臂举升时液压系统峰值功率大,动臂下降时举升装置重力势能经液压阀口以节流损失的形式转化为热能,导致液压油温度升高、系统能量效率低。提出基于三腔液压缸的装载机动臂自重液气平衡势能回收系统,在SimulationX仿真软件中建立了装载机机液联合仿真模型,通过试验结果验证了该模型的准确性。在此模型的基础上,采用已建立的三腔液压缸仿真模型代替原机动臂两腔液压缸,针对空载工况中动臂的举升下降过程进行了仿真研究,对比两腔液压缸与三腔液压缸的运行与能耗特性。研究结果表明:在蓄能器初始压力为6 MPa时,该系统具有与原机相同的运行特性,液压泵峰值功率降低57. 1%,能量消耗降低约39. 5%。
基于补偿压差可调的多路阀流量控制特性研究
现有多路阀采用压力补偿器补偿载荷差异,受补偿器弹簧力、液动力等因素影响,补偿压差Δp和阀口流量系数Cd不能维持定值,导致多路阀流量控制精度较低。为此,提出多路阀补偿压差调控原理,设计了比例减压阀控制补偿压差方案,实时调控多路阀补偿压差,提高流量控制精度,同时还可以改变多路阀流量增益,实现小压差下执行器的精细动作和大压差下执行器的快速响应。首先理论分析比例减压阀控制的补偿器阀芯受力关系,进一步根据真实结构参数,在Simulation X平台中建立了补偿压差可控多路阀多学科联合模型,对多路阀的压差调控特性和流量特性开展研究。结果表明,设计的补偿压差可控型多路阀,能够在0~4 MPa范围内实时调控多路阀补偿压差,阀口流量呈非线性变化;0.5 MPa和4 MPa补偿压差下,多路阀流量可变为额定流量的48.6%和146%;进一步通过对压力补偿器阀芯...
轴向柱塞泵非止点配流窗口过渡区压力脉动特性分析
为能用单台泵直接闭式控制差动缸运动,把轴向柱塞泵的吸油配流窗口改为两个独立的窗口,一个连接差动液压缸的有杆腔,另一个连接低压油箱,用于平衡差动缸的面积比,但柱塞通过这两个配流窗口之间的过渡区时,因处于泵的非止点位置,柱塞腔容积变化较大,引起大的流量和压力变化,产生大的噪声,为了减小其影响,需要对柱塞通过此过渡区域的特性进行分析。为此,采用仿真软件SimulationX,建立柱塞通过配流窗口的仿真计算模型,对单个柱塞腔内部以及泵输出油口压力和流量动态过程进行仿真,综合运用减震三角槽、阻尼孔和等效预压缩角三种措施,减小泵的流量和压力脉动。通过仿真计算,确定出合理的配流盘结构参数。在此基础上,进一步制造出样机,对泵的压力脉动特性进行试验测试,验证仿真结果及设计参数的正确性。研究工作丰富了柱塞泵的类型。
铰接式装载机转向特性的分析与试验研究
装载机在工作过程中具有转向频繁的特点为了分析铰接式装载机转向过程中的稳定性和能量消耗情况首先对转向机构的运动学和动力学进行了分析推导出了转向液压缸行程差和力臂差的计算公式.然后对转向液压系统进行了理论分析和试验测试通过对试验结果的分析得到了实际工况中影响转向稳定性的因素和其能量消耗情况并在分析的基础上提出了提高转向稳定性和减小能量损失的方案对转向系统的设计具有一定的指导意义.
装载机流量匹配转向系统特性分析
国产小型装载机普遍采用负荷传感转向方式,该系统定量泵输出流量不能根据负载需求进行调节,会产生与流量有关的能量损失。针对此问题,提出用伺服电机独立驱动定量泵的流量匹配转向控制方法。在SimulationX中建立了装载机整机联合仿真模型,对采用负荷传感转向系统的装载机进行了仿真研究;构建了装载机的试验测试系统,对比仿真与试验结果,验证了仿真模型的准确性。进一步将流量匹配转向系统应运于此仿真模型,维持与现有系统相同转向特性的条件下,该系统在各转向工况下降低泵输出能耗约35%。
装载机电液混合流量匹配转向系统特性研究
为提高传统装载机能量利用率,提出采用变转速定量泵独立供油的电液流量匹配转向原理,用于控制装载机转向,将装载机方向盘转向角速度与伺服电机转速进行合理匹配,使液压泵输出相应流量到转向系统中,当无转向信号时,转向动力源不输出流量。若电液流量匹配转向系统出现故障,则该液压转向系统经电磁阀自动切换到原有转向系统,继续完成转向作业。首先建立铰接式装载机机械结构动力学与电液混合系统联合仿真模型,利用该模型对电液流量匹配系统的转向过程进行仿真,进一步建立试验测试样机,对转向系统的动态及能耗特性进行测试,并与原有转向系统的转向特性进行对比。研究结果表明:采用电液混合流量匹配转向系统,可减少转向过程的节流损失并消除溢流损失,节能约16%,并可减小压力冲击和波动,系统的稳定性也得到明显提高。
大型正铲液压挖掘机斗杆升降回路及特性
在设计目前国内斗容和机重最大的矿用液压挖掘机液压控制系统中,为减小使用成本,采用交流电动机驱动变量液压泵组作为动力源。为满足工作效率要求,斗杆举升过程采用四台液压泵供油,通过四组比例多路阀(主控阀)阀外合流来满足斗杆的速度要求,为降低能耗,提出在斗杆下降过程依靠自重和专用的比例节流阀进行流量再生的控制方法,加快斗杆下降速度,提高系统工作效率。分析斗杆采用流量再生方法下降的前提条件,对斗杆液压缸在一个工作循环内的压力变化进行机电液一体化的联合仿真研究,按照仿真确定的参数设计并制造样机,试验测试表明,挖掘机加载最大试验负载25 kN时,所设计的液压控制系统可以满足斗杆满载举升所需要的压力及速度要求,斗杆下降采用流量再生方法后,下降时间由32 s缩短至18 s,下降速度明显加快,且...