负流量控制液压挖掘机回转系统仿真及实验验证
采用恒功率柱塞泵作为轮式液压挖掘机的回转驱动动力源,提出了一种负流量控制方案。通过AMESim仿真确定复位弹簧刚度对系统回转控制性能影响,仿真测试和实际测试结果相符,说明仿真分析都是正确的。结果表明:随着复位弹簧刚度的增大,压力峰值时间也更长;随着复位弹簧刚度的增大,压力响应速度出现了变慢。在不同的复位弹簧刚度下获得了基本一致的阀出口流量最大值,但会引起控制阀换向过程形成不同的流量响应速度。增加控制阀开度的过程中形成了更大的流阻压力,压力达到6.23 MPa后达到稳定状态。系统流量响应速度相对压力响应存在一定的滞后性,而流量增大时则没有出现明显的脉动。
基于液压二次调节技术的大惯量回转系统预定性能自适应鲁棒控制研究
将液压二次调节技术应用于大惯量回转系统可以进行制动能量的回收,本文针对基于液压二次调节技术的大惯量回转系统存在的参数不确定性以及未知的外部扰动引起的跟踪精度不足的问题,提出了预定性能自适应鲁棒控制器。将预定性能和自适应鲁棒器相结合,对大惯量回转系统存在的未知参数进行了估计,并使用Lyapunov函数严格保证了整个系统的半全局渐近稳定。仿真结果表明:相同的工况下,与PID以及普通的自适应鲁棒控制相比,本文所设计的控制器可以让大惯量回转系统有更好的跟踪精度和较高的鲁棒性。
阀口独立控制液压挖掘机回转制动能量回收系统特性
液压挖掘机上车回转平台转动惯量大,工作中高频次起制动,大功率的制动动能转化为控制阀阀口热能被浪费。提出阀口独立控制液压挖掘机回转制动能量回收系统,采用泵阀复合、压力流量匹配控制策略抑制回转平台起动过程的节流和溢流损失,利用阀口独立多自由度控制的优点解决制动阶段回转系统的压力冲击和反转问题;通过蓄能器回收利用回转平台制动动能;在空载制动过程中,通过增压缸向蓄能器补充油液。建立了回转系统机电液联合仿真模型,并对所提系统的运行与能耗特性进行分析。结果表明:满载和空载制动阶段蓄能器能量回收率分别为77.4%和77.8%,在增压缸的作用下解决了蓄能器油液回收不足的问题,较传统回转系统能耗降低45%。
爱上创新 作利益的创造、耕耘和贡献者——访北京亿美博科技有限公司总经理 杨涛
2014年4月,原中国工程院院长周济赴亿美博公司考察调研;2018年7月,亿美博公司与三一集团签订"工程机械数字液压应用项目"战略合作协议;2019年7月,三一集团首台数字液压起重机在三一集团宁乡产业园下线,亿美博公司是该款起重机回转系统的数字液压控制系统供应商。这三条新闻让亿美博数字液压(本文把亿美博公司研发、制造的数字液压统称为亿美博数字液压)进入了更多人的视线。
大惯性回转系统速度位置复合控制特性研究
传统工程机械液压回转系统位置控制一般采用驾驶员在环的控制方式,靠驾驶员的观测实现定位,由于驾驶员反应较慢,会影响生产效率和作业的一致性,难以满足对回转定位精度要求较高的工程作业。针对这一问题,在进出口独立控制液压回转系统的基础上,提出采用速度位置复合闭环控制方法,加入速度前馈用于减小跟踪误差,同时加入压差反馈和速度反馈用于减小压力和速度波动,改善系统运行平稳性。首先建立了液压挖掘机回转系统多体动力学机电液联合仿真模型,对所提控制策略的有效性进行了验证;并以液压挖掘机为研究对象,构建了进出口独立控制回转试验测试系统,对所提出的控制方法进行了试验分析。仿真和试验结果表明,对于不同的期望速度和期望位置,无论回转系统正向还是反向运行,都可以获得较高的定位精度,定位误...
蓄能器在挖掘机节能驱动系统中的仿真研究
液压挖掘机在工作过程中频繁的启动和制动造成很大的能量损失,文中将二次调节技术应用到挖掘机回转液压系统中,利用蓄能器进行能量回收,在必要的时候进行释放,可实现转台能量的回收和再利用.通过AMEsim软件进行仿真试验,判别蓄能器在新的液压系统中的设计是否合理、能否达到节能的目的.
二次调节在液压挖掘机中的应用研究
从二次调节技术的工作原理出发,阐述二次调节技术的原理特点及其在液压挖掘机中的应用情况,为二次调节在生产生活中的实际应用提供方案,从而达到节能的目的。
挖掘机回转溢流能量回收及应用研究
-般的液压挖掘机回转启动和制动时采用溢流阀进行压力限定 提供启动过程的驱动扭矩 在制动时 则作为背压提供负扭矩 使回转制动.而液压油经溢流阀溢流 回转的动能转化为液压油的热能而被消耗 导致能量无效浪费 液压油温升高.对回转特性进行了理论分析、 提出了一种回转溢流能量回收和应用的技术方案 建立了仿真模型和进行了仿真分析 最后搭建了物理样机并完成测试 达到良好的节能效果 且降低了整机液压系统的发热量.
160T汽车起重机回转液压系统的动态仿真
160吨全路面汽车起重机是国家八五期间的重点攻关项目,本文在现有的液压仿真技术的基础上,地其回转液压系统的动态性能进行了理论研究,建立了回转系统的元件模型与系统模型,对回转系统的启动过程进行了动态计算及其仿真结果分析。
全液压塔机回转系统能量再生与应用研究
全液压塔机通常带载回转,转动惯性大。回转制动时,转台惯性动能会导致系统油路压力冲击,最终以热能形式散失造成能量浪费并使油温升高,致使系统性能下降。利用蓄能器和泵/马达二次元件给出一种塔机回转制动能量回收及再利用系统,回转制动的惯性能量回收后用于塔机散热系统的辅助动力,以避免回收能量对系统主回路运行产生影响。仿真结果表明,与原回转液压系统相比,该系统回转制动过程更加平稳,能够保证制动精度,回收的制动惯性能量用于塔机散热系统辅助可节能17.48%。