考虑环境参数的风电齿轮箱传动系统疲劳性能优化
随机风速会使风电齿轮箱传动系统出现频繁的载荷波动,造成复杂的结构变形,容易产生齿轮偏载,加剧其接触疲劳失效风险。提出了一种考虑环境参数随机不确定性的风电齿轮箱传动系统疲劳性能优化方法,在建立计入全局载荷的风电齿轮箱传动系统动力学模型基础上,利用代理模型方法重构“平均风速、湍流强度-齿轮修形参数-齿轮长期接触疲劳损伤”映射关系,建立考虑风速概率分布的多级齿轮修形参数优化函数,对比了风电齿轮箱传动系统疲劳性能优化效果。结果表明,低速级太阳轮长期接触疲劳损伤值大于0.7,是风电齿轮箱传动系统高可靠设计的薄弱环节之一;优化后的风电齿轮箱齿轮长期接触疲劳损伤值明显降低,其中低速级太阳轮长期接触疲劳损伤值降低了11.37%,疲劳性能提升效果显著。
轴向柱塞泵疲劳损伤分析及寿命预测
轴向柱塞泵工作环境恶劣、工况复杂,柱塞在柱塞腔内做往复直线运动,承受着复杂的交变应力,疲劳损伤是其常见的失效形式之一。为了分析柱塞泵的疲劳损伤、预测其剩余寿命,提高其运行的安全可靠性,提出柱塞泵疲劳损伤分析及寿命预测方法。建立柱塞泵的刚-柔-液耦合模型,进行联合仿真并分析;基于Miner疲劳累计损伤理论,运用ANSYS Workbench软件及nCode模块,得到柱塞的疲劳损伤云图和疲劳寿命云图,对柱塞泵疲劳损伤的薄弱部位以及剩余寿命进行分析,最后探究了主轴转速、工作压力对柱塞泵疲劳损伤及剩余寿命的影响。结果显示:在典型工况下,柱塞的疲劳寿命约为7448.8 h,基本可以满足柱塞疲劳寿命要求。
铁磁材料疲劳损伤的磁性无损检测技术
疲劳破坏是铁磁材料构件主要的失效形式,评价铁磁材料的疲劳损伤在工程实践中具有重要的意义。磁性无损检测新技术在判断铁磁材料的疲劳损伤领域具有广阔的应用前景。综述了磁巴克豪森噪声技术(MBN)、磁声发射技术(MAE)和磁记忆技术(MMM)的检测原理、特点和应用情况,提出了三种新技术目前存在的问题和未来的发展。
海上风机单桩基础疲劳损伤计算方法
为提高海上风机基础疲劳损伤计算的准确性,评价不同计算方法的适用性和影响,以海上风机单桩基础为例进行疲劳评价,建立全时域的动力分析模型和基于功率谱密度函数的频域疲劳损伤计算流程,研究气动阻尼比取值、风与波浪联合作用、应力幅概率分布模型对基础疲劳损伤的影响.结果表明:基础疲劳损伤受气动阻尼比影响突出,风致疲劳损伤对气动阻尼比的敏感性大于浪致疲劳损伤;由于风与波浪联合作用对基础的疲劳损伤有较大影响,简单叠加风致疲劳损伤和浪致疲劳损伤得到的结果较风与波浪联合作用时偏小;确定合适的应力幅概率分布模型十分必要,频域法中采用Dirlik模型得到的风致疲劳损伤和采用快速傅里叶逆变换(IFFT)的浪致疲劳损伤分别与时域法的结果相近,但叠加的总疲劳损伤小于风与波浪联合作用时的总疲劳损伤.
典型工况下动车组设备舱气动载荷与损伤规律
京广高铁武广段运用的CRH-3C型高速动车组设备舱内支架、裙板吊挂等焊缝位置以及其它应力集中点常有疲劳裂纹出现,而该现象在京津城际上运用的同型号动车组中却比较罕见。针对这种现象,考虑是武广段大量的隧道群所致。为了对此进行验证,在某动车组设备舱内裙、底板布置了大量气压和应变传感器,在沪昆高铁南昌西-宜春段进行了不同速度下大量的隧道通过、交会等典型工况测试,获得了丰富的气动载荷和动应力数据。以此试验为基础,对若干工况下,关键位置气动载荷和动应力的变化规律进行研究发现,伴随气压幅值突变,大多位置应力水平均有提高,裙板中央以及靠近车头的前部底板等处尤为明显。上述结论对武广段的CRH-3C型动车组设备舱疲劳破坏现象给出了合理解释,并对今后基于不同线路特点,有针对性的动车组型号选择和设备...
基于振动信号的机械密封金属波纹管疲劳分析
针对"S"型金属焊接波纹管振动疲劳失效问题,采集相关工况下的振动信号,使用短时傅里叶变换编辑信号的方法识别损伤区间,并在区间端点等距插值拼接信号,得到用于零件疲劳分析的编辑信号。对原始信号和编辑后的信号用雨流计数法统计损伤循环次数,并求出信号的平均能量;将编辑信号加载至波纹管,通过仿真计算进一步验证,得到了编辑信号与原始信号影响下波纹管的疲劳损伤分布云图;并分析不同转速下,振动信号不同应力范围的能量循环次数。结果表明:通过信号缩减得到的编辑信号有效地保留了损伤片段并且缩减了信号的长度,表明基于短时傅里叶变换的缩减信号方法可以有效地缩短疲劳实验的时间,加速研发周期;低转速时波纹管径向应力较大、循环次数较高,更容易发生振动疲劳。
车体振动模态对疲劳强度的影响分析
铁路运输车辆不断朝着高速以及轻量化方向发展,车体承受着复杂的交变载荷,极大地增加了车体结构疲劳断裂的风险。为探究车体结构振动对车辆结构安全性的影响,利用ANSYS Workbench进行车体模态仿真计算。结合服役环境下动车组车体运行模态测试数据,提取出车体1阶菱形(8~9 Hz)、1阶垂弯(12~13 Hz)、1阶横弯(15~16 Hz)及1阶扭转(17~18 Hz)模态频率,对车体有限元模型进行对比修正。利用雨流计数法对部分实测载荷谱数据谱进行处理,得到载荷谱雨流计数矩阵。在模态分析的基础上进行谐响应分析,得到上述不同模态频段范围内的频率响应函数,结合nCode疲劳仿真软件对车体疲劳强度进行仿真计算,得到不同频段范围内车体的疲劳损伤;采用Miner线性累积疲劳损伤理论对仿真计算结果进行疲劳损伤评估,结果表明:车体1阶菱形模态(8~9 Hz)附近频段对车体造成的损伤最大,其...
冲击与循环载荷作用下圆环链疲劳损伤机理研究
圆环链作为矿业运输和港口机械的关键部件,疲劳失效是影响其寿命的关键问题。针对圆环链处于冲击载荷与循环载荷作用下的疲劳损伤,利用Workbench仿真软件分析空载启动、卡链和正常运行工况下的圆环链损伤特性,并利用线性累积损伤原理分析疲劳寿命。研究表明,冲击载荷和循环载荷作用下链环接触位置不同,且循环载荷下环肩部疲劳损伤最大,寿命最短。研究结果为优化链环结构、提高链环寿命提供了参考依据。
自增强疲劳寿命的理论分析
自增强处理是化工、石油行业提高高压设备承载能力和疲劳寿命的重要举措。文中利用断裂力学理论和疲劳损伤理论,探讨研究了自增强处理后残余应力对高压设备寿命的影响,得出引入残余压应力能提高高压设备寿命的结论,对今后在自增强处理方面的实验与理论研究具有指导意义。
增压器涡轮箱疲劳分析与寿命预测
作为增压器核心零部件,涡轮箱的疲劳失效主要由热载荷引起。结合汽车发动机可靠性试验方法规范,通过CFD、FEA仿真和FEMFAT疲劳,计算分析增压器在不同工况下的温度及累积塑性应变分布情况和涡轮箱危险部位的疲劳损伤,对涡轮箱的疲劳寿命进行预测分析,经过计算分析该涡轮箱疲劳寿命约为1490h,能够满足实际使用要求。