频谱密度函数相似性比较的齿轮箱故障诊断
为降低齿轮箱振动信号频谱分析与故障识别的难度,提出了基于频谱核密度估计与密度函数相似性比较的齿轮箱故障诊断方法。首先针对齿轮箱的每一种故障状态采集多组振动信号,利用核密度估计方法对每组振动信号的频谱求取密度函数#然后选取一部分密度函数进行算术平均化,得到对应故障状态下的标准密度函数;最后根据测试振动信号频谱密度函数与各种故障状态标准密度函数之间的余弦相似度值与相关系数值,对齿轮箱的故障状态进行识别。试验结果表明与振动信号的频谱相似性比较方法相比,所提方法对于齿轮箱故障状态的判别具有更高的准确率,同时对应于齿轮箱的不同故障状态,相关系数比余弦相似度显示出更大的差异性,具有更好的适用性。
-
共1页/1条