伺服驱动液压缸静压导向套温度场
液压四足机器人具有运行平稳,载重强,适应环境多样化等特点,因此高校与企业研究较为广泛。电液伺服驱动缸作为四足机器人的主要驱动元件,具有抗偏载强、高速运动平稳、低摩擦等特点。电液伺服驱动缸在偏载的情况下,对静压支撑导向套中油膜的温度场进行分析,把油膜偏载的状态用三维建模软件建立出来,运用ICEM CFD软件对油膜进行网格划分,运用FLUENT软件对油膜进
电液位置伺服系统模糊速度补偿μ复合控制
针对变刚度电液位置伺服系统在快速定位控制中存在的超调现象,考虑负载刚度对位置伺服系统的影响,提出了模糊速度补偿μ复合控制策略,给出复合控制策略的工作原理,导出速度流量补偿模型。设计模糊速度补偿器及鲁棒μ控制器,实现了伺服缸无扰速度补偿及负载刚度摄动的抑制,应用Matlab、AMESim联合仿真和半实物仿真平台分别进行复合控制策略验证,仿真及实验结果表明,μ控制器有效抑制了负载刚度摄动,而速度补偿的引入使系统在快速性条件下实现了位置的精确定位控制,验证了所提控制策略的有效性。
液压驱动四足机器人变刚度力跟踪控制
针对液压驱动机器人在变刚度条件下力控制问题,建立了液压驱动四足机器人系统的阻抗模型和带有弹性负载的阀控缸模型.分析系统刚度变化对系统性能的影响,指出常规控制策略在精确足力跟踪控制中的不足,结合变刚度条件下阻抗模型和电液位置伺服系统的特点,提出实现精确足力跟踪的模糊自适应PID位置内环控制和模糊阻抗外环控制的复合控制策略.在半实物仿真平台上进行变刚度条件下的足力跟踪实验,仿真结果表明在变刚度条件下,足力跟踪曲线最大超调及稳态误差均小于5%,调整时间基本相同,验证了所提控制策略的有效性.
液压四足机器人的跳跃步态控制
针对液压四足机器人的跳跃步态控制问题,依据弹簧负载倒立摆(spring-loaded inverted pendulum,SLIP)模型理论对四足机器人跳跃过程进行分析,采用解耦的控制思想,将运动控制分为水平运动控制、竖直运动控制和机身姿态控制,通过在腾空相对触地角的调整实现水平方向上速度的控制,在触地相进行能量补偿与机身俯仰姿态调整,完成对跳跃步态的控制,并在仿真软件中建立虚拟样机进行仿真分析,得出跳跃运动过程中的运动速度、跳跃高度和足端弹簧所受力的大小。最后在液压四足机器人平台上进行验证,证明了该方法可以实现四足机器人稳定的周期跳跃运动。
液压四足机器人关节驱动节能
针对液压四足机器人作动器能耗较大问题,分析液压四足机器人各关节驱动力在摆动相和支撑相特点,提出变供油压力作动器作为液压机器人关节驱动方案,给出变供油压力作动器的构成、工作原理及参数设置方法,应用增益切换方法实现变供油压力作动器控制.此变供油压力作动器具有结构简单、控制方便、节能效果显著、便于应用到其他载荷变化较大的场合.采用MATLAB、AMESim联合仿真平台进行所提方案验证,仿真结果表明,变供油压力作动器与固定供油压力作动器具有相同性能,且能够实现系统节能,最后通过机器人单腿测试平台验证了所建仿真模型的正确性.
基于最小控制综合算法的液压机器人作动器控制
为提高液压四足机器人在运行过程中作动器伺服精度,推导电液伺服作动器等效模型,分析作动器负载特点,提出流量补偿器最小控制综合复合控制策略,给出复合控制策略的工作原理。分别采用流量补偿器和比例位置内环抑制外干扰力和惯性负载变化对系统性能影响,应用最小控制综合控制器对偏差进一步修正,进而实现系统的高精度位置控制。通过MATLAB&AMESim联合仿真与半物理实验台对比实验说明仿真模型的正确性,在联合仿真环境下进行电液伺服作动器的变惯性负载和随机干扰力的仿真实验。仿真及实验结果表明:所提控制策略可使系统幅值衰减小于10%,相位滞后小于10°,验证了此方法的有效性。
液压机器人作动器建模及关节转角跟踪控制
针对液压四足机器人作动器伺服精度较差问题,分别推导电液伺服作动器在摆动相、刚性支撑相和弹性支撑相的等效模型,分析各作动器模型特点,提出比例内环自适应幅相控制外环的复合控制策略,应用比例控制器保证位置内环的稳定性,采用自适应幅相控制器进行幅值和相位补偿。通过机器人单腿测试平台进行控制策略验证,实验结果表明:所提控制策略可使系统幅值衰减小于2%,相位滞后小于4°,验证了此方法的有效性。
液压四足机器人机身扰动抑制及实验研究
针对液压四足机器人在运动过程中的机身扰动较大的问题提出基于运动学和虚拟模型的液压四足机器人机身扰动抑制策略。分析机器人机身扰动产生的机理及其影响建立四足机器人整机运动学方程根据机器人实时姿态反馈抑制机身扰动。同时在机器人机身横滚和俯仰自由度上引入弹簧阻尼虚拟元件通过调整虚拟力的大小控制机身姿态。面向机器人对角小跑步态对机器人摆动相和支撑相进行足端轨迹规划。通过液压四足机器人平台进行实验验证实验结果表明该扰动抑制策略能够根据机器人的机身姿态调整关节角度机器人机身起伏小机器人实际运动轨迹与理论运动轨迹接近验证了所提方法的有效性。
液压四足机器人关节重复补偿控制
针对液压四足机器人电液伺服作动器存在的位置跟踪精度较差问题,提出一种重复控制策略来实现位置跟踪控制。根据液压四足机器人的电液伺服系统各个驱动单元的数学模型,得到简化后的液压位置驱动单元的传递函数。设计了重复控制补偿PID控制器,采用Matlab和AMEsim软件进行联合仿真,进行各个模块的参数设置,得到了的电液伺服系统的位置跟踪曲线。并通过液压四足机器人实验平台进行实验验证控制器的有效性。研究表明,重复控制器可以有效的利用电液伺服作动器的重复运行信息,经过一定误差纠正后,幅值实现完全跟踪,相位滞后减小,验证了重复控制补偿PID的有效性。
液压机器人关节力补偿控制研究
针对液压四足机器人作动器驱动力伺服精度较差问题,依据腿部机构在摆动相和支撑相的作动器等效模型,分析作动器模型特点,提出流量补偿、速度补偿、比例控制器及最小控制综合组成的复合控制策略,给出复合控制策略工作原理,应用流量补偿器消除干扰力和负载力变化对伺服阀性能影响,应用速度补偿器消除负载质量和弹簧刚度变化对系统性能影响,采用比例控制器获得一定的动态特性,通过最小控制综合控制器进一步提高系统的驱动力跟踪精度。通过机器人单腿测试平台进行控制策略验证,实验结果表明:引入流量补偿器、速度补偿器和比例控制器后,可使系统幅值偏差小于10%,相位滞后小于13°,而最小控制综合的引入可使系统幅值衰减小于5%,系统相位滞后小于7.2°,验证了此方法的有效性。