高压大流量电液换向阀动态特性测试系统
在研制和生产高压大流量换向阀过程中必须对阀的多种参数进行动态测试,对电液换向阀的动态特性测试方法进行研究,建立了新型测试系统。实现了包括分合闸时间、电磁铁电流、各阀口压力、各级阀芯液压驱动力和流量等多种电液换向阀的动态参数的测试。采用多参数集成测试技术并结合了虚拟仪器技术,实现测试数据的采集、处理、实时显示和存储等功能。最后通过实验得到了电液换向阀的动态测试数据。
基于特征选择与软竞争ART的轴承故障诊断
模糊自适应共振理论(fuzzy adaptive resonance theory,简称Fuzzy ART)已被广泛应用于机械设备实时监控和故障诊断。Fuzzy ART采用只允许一个获胜节点学习的硬竞争学习机制,导致系统极易产生误判。针对此问题,将Yu范数相似度准则、生物侧抑制理论与Fuzzy ART相结合,建立了允许多个获胜节点学习的软竞争ART(简称Soft-ART)算法。为了提高故障诊断精度,运用Yu范数相似度测度改进了基于距离测度的特征参数选择方法。利用轴承故障诊断数据对特征选择算法及Soft-ART算法进行了检验,并与FCM,BP及Fuzzy ART算法进行了对比。结果表明,该Soft-ART算法具有更高的诊断精度,同时说明了特征选择算法的有效性。
基于奇异值和奇异向量的振动信号降噪方法
针对复杂的转子振动信号中同时存在随机噪声干扰和工频噪声干扰的问题,提出了基于奇异值和奇异向量相结合的降噪方法.首先,对振动信号进行奇异值分解(singular value decomposition,简称SVD),根据奇异值谱确定振动信号有效奇异值阶次;其次,对有效阶次范围内的奇异向量进行快速傅里叶变换(fast Fourier transform,简称FFT),依据幅值谱筛选出对应于工频噪声的奇异向量;最后,利用其余的奇异值和奇异向量进行重构得到降噪的时域信号.通过仿真信号和工程试验信号对该方法进行了验证,结果表明,基于奇异值和奇异向量相结合的降噪方法,不但能有效降低振动信号中的随机噪声干扰,还能有效降低工频噪声干扰,同常用的陷波器方法相比所提出方法具有明显优势.
基于奇异值分解的ERA改进算法及模态定阶
研究了一种基于奇异值分解的ERA改进算法和模态定阶方法。在奇异值分解基础上,根据选定阶次在动态系统中所占比重,提出一种模态定阶指标——奇异值百分比,将该指标应用在改进后的特征系统算法中。首先,利用脉冲响应信号构造初始Hankel矩阵,对此矩阵进行奇异值分解生成去噪后的信号矩阵;其次,根据Cadzow算法重构Hankel矩阵;最后,利用奇异值指标确定模态阶次。通过仿真算例验证了改进后的特征系统实现算法具有良好的抗噪能力,利用定阶指标能有效确定模态阶次、剔除虚假模态,对于阻尼识别精度更高。应用该方法对某三厢车排气系统进行了模态参数识别,通过与LMS系统识别结果比较验证了方法的准确性。
基于频率变化率的结构刚度非均匀退化识别
针对不利环境作用、损伤等易造成结构局部损伤且刚度退化程度不均匀的问题,以受弯梁为研究对象,从构件动力特性入手,综合考虑损伤前后的模态挠度曲率和固有频率变化,提出了基于频率变化率的刚度非均匀退化识别方法.首先,在柔度矩阵的基础上推导模态挠度曲率,通过损伤前后模态挠度曲率的改变量识别损伤位置参数,判定损伤区域;其次,对损伤区域进行节段划分,从欧拉-伯努利梁的动力方程出发建立损伤程度、损伤区域位置参数与固有频率之间的矩阵函数,实现直接利用频率值变化评估构件不同区域损伤程度.研究结果表明,该方法能很好地识别结构局部损伤位置和损伤程度,尤其是对于结构局部刚度不均匀退化的评估具有明显的优势.
基于分层多信号流图的飞机空调系统故障诊断
在对飞机空调系统各主要部件进行故障模式影响分析(failure mode and effects analysis,简称FMEA)的基础上,采用分层多信号流图(hierarchy multi-signal flow,简称HMSF)方法对飞机空调系统进行故障诊断与仿真分析,得出了飞机空调系统的故障-测试关联矩阵,并给出系统各部件的故障检测率和故障隔离率。针对系统故障隔离率较低的情况,在尽可能少增检测点的前提下,对飞机空调系统分层多信号流故障模型进行了改进,增加了涡轮等部件共5个检测点,使飞机空调系统的故障检测率从91.4%提高到100%,故障隔离率从32.9%提高到83.9%。研究发现,分层多信号流图方法有助于改善飞机空调系统的故障检测率和故障隔离率,提高系统的故障诊断效率,为飞机空调系统健康管理的设计提供技术基础。
转速波动工况滚动轴承打滑动力学特性分析
滚动轴承实际运转过程中经常存在的转速波动现象,对滚动轴承的运行状态产生重要影响。基于Hertz接触理论和变形-位移相容条件建立滚动体与套圈的相互作用模型,采用非线性弹簧模拟滚动体与保持架间的相互作用,建立了转速波动工况下滚动轴承打滑动力学模型。通过与实验测试结果的对比,验证了所提出的动力学模型的正确性,并在此基础上分析了转速波动对滚动轴承打滑的影响及不同转速波动幅值、频率下滚动轴承的打滑特性。结果表明轴承转速波动会造成保持架转速出现波动,导致轴承出现打滑,且滑动主要出现在滚动体与内圈之间;转速波动幅值对轴承打滑影响较大而频率影响较小。
重型车辆转向节臂强化路耐久性断裂试验
为研究某重型车辆在试验场强化耐久路可靠性试验中发生的转向节臂锥体根部断裂问题,从材料组织结构特性和工艺装配精度角度考虑,对转向节臂断裂故障模式进行了详细分析。在断裂口附近粘贴全桥弯曲应变片并布置与转向系统关联的测试传感器,采集断裂部位的弯曲应变、侧向加速度及转向横拉杆位移等试验数据。依据缺口根部循环应力-应变滞回环曲线方程及诺伊贝尔(Neuber)原理,将测试的名义应力载荷转换成断裂部位的局部应力-应变响应,利用曼森-科芬(Mason-Coffin)平均应力修正方程计算断裂位置的疲劳寿命和损伤。分析和计算结果表明,转向节臂材料特性满足设计技术条件,而工艺装配锥度及表面粗糙度不满足图纸设计精度,转向节臂与转向节的装配接触面积只达到30%,导致转向节臂锥体根部产生局部高集中应力,最终发生弯曲低周疲劳断裂。
不同端板条件下的圆柱涡激振动试验
以涡激振动海流能利用为工程背景,在流速范围为0-0.75m/s的自循环水槽中开展了直径为6cm的单自由度圆柱涡激振动试验研究,分析了5种不同形状端板、7种不同尺寸矩形端板条件下圆柱涡激振动的响应规律,提出了适用于能量利用的端板形状与合理尺寸。研究结果表明:5种端板中最有利于能量利用的为矩形端板,最不利的为无端板;矩形端板圆柱的振幅和频率为无端板圆柱的1.38倍与1.25倍;利于增强振动的矩形端板顺水流方向长度应控制在1.5-2倍圆柱直径范围内。
QPSO匹配的FIE随机共振轴承故障诊断
针对随机共振(stochastic resonance,简称SR)系统处理复杂信号的局限性以及参数选择的盲目性,提出了一种基于频域信息交换(frequency information exchange,简称FIE)的量子粒子群自适应参数匹配随机共振方法。首先,采用FIE将高频特征信号的频域幅值信息交换到对应的基准低频处;然后,根据基准频率特征采用量子粒子群优化(quantum particle swarm optimization,简称QPSO)算法优化SR系统参数;最后,对振动信号进行随机共振处理。滚动轴承实测信号的分析表明,该方法可以消除随机共振对频段的局限性,避免系统参数选择的盲目性,使随机共振更适用于强噪声背景下较高频段的故障信号检测。