高能X光闪光照相中CCD相机的MTF
鉴于CCD相机系统在奈奎斯特频率附近出现的较严重的像元对信号的调制现象,提出了一种空间全分辨的概念,对CCD的调制传递函数(MTF)进行了分析。模拟了高能X光闪光照相环境及CCD器件性能参数对CCD的MTF的影响。得出了CCD相机极限分辨率的决定因素是CCD像元尺寸,高能X光闪光照相环境是影响CCD的MTF的重要因素的结论。在CCD像元尺寸受限的情况下,尽量减少高能X光闪光照相环境的影响成为改善CCD相机MTF的最有效途径。
辐射照相系统中转换屏的分辨率研究
在高能X光辐射照相系统中,通常使用闪烁体材料的转换屏将X光转换为可见光进行探测.建立了转换屏空间分辨率的计算模型,模拟了转换屏的空间分辨率随屏的厚度、材料及X光子能量的变化关系,为系统的设计提供了参数.
可判向光纤位移干涉仪在振动测量中的应用
提出了基于光学多普勒效应和外差方法设计的可判向光纤位移干涉仪,装置采用光通信行业中已经发展成熟的器件,主要有带尾纤的半导体激光器、1×2光纤耦合器、三端口环形器、光纤探头、3×3光纤耦合器、探测器以及示波器等构成。在原有结构的基础上,增加了光纤放大器和光纤滤波器,大大提高了信号光光强。结合李萨如图形给出了可判向光纤位移干涉仪的信号处理方法。利用该干涉仪测量了压电陶瓷的振动,实验表明能够测量的最小振动峰峰值为0.43μm,并根据实验分析了干涉仪测量微位移的一些制约因素。研究表明,制约干涉仪测量微位移能力的主要因素是3×3光纤耦合器的非理想性,如3×3光纤耦合器输出干涉信号的位相差不恒定。
测量角度对激光干涉测速的影响分析
对现有激光干涉测速技术中不同的照明角度和测量角度进行了分析,讨论了入射激光和反射激光的角度对测速结果的影响,并结合理论分析进行了实验设计和动态测试,测试结果与理论分析吻合,表明倾斜测试时,其测量结果均低于靶的真实运动速度.对于一维运动的平面靶,可以通过测量结果除以测量角度的余弦值进行修正而得到靶的真实运动速度.透镜口径等因数对测速结果的影响在1%以内.
大口径纹影系统主反射镜装调结构分析与设计
研制纹影测试系统中大口径主球面反射镜的装调结构.利用有限元法,对有效通光口径直径为800mm的主镜进行应力和面变形分析.采用断裂几率预测法校核玻璃机械强度,通过优化得出反射镜面变形的均方根(root mean square,RMS),以此为依据,设计出满足系统技术要求的主镜装调结构.
全光纤速度干涉仪设计及应用
针对冲击波物理与爆轰物理等研究领域中对高速运动物体进行连续速度测量的需求,设计了一种全光纤速度干涉仪.该干涉仪采用单模光纤作为光传输和延迟元件,对t和t-τ两个时刻由于速度变化而引起的多普勒差拍信号进行检测.由于两个时刻的两束光信号对应的待测物体速度变化不大,因而两者几乎有相等的频移量,从而大大降低了差拍信号频率.并且,通过光纤长度的改变,灵活调节条纹常量(τ值),使差拍信号频率不超过记录系统的带宽,从原理上解决记录系统响应带宽受限问题,拓展测速的上限.单模光纤的采用,对漫反射光起到了较好的选模作用,使干涉仪实现了对漫反射靶的测量.实验设计了1.5ms^-1和150ms^-1两种条纹常量,对低速过程的霍普金森杆实验和高速过程的激光驱动实验分别进行了测试,取得较好结果,证明了该干涉测试技术的有效性.
THz干涉测量用于障碍物后振动传感的研究
为探索THz干涉技术用于障碍物后振动传感的可行性,采用工作波长214.58μm(对应频率约1.4 THz)的CO2激光器泵浦气体太赫兹源搭建了一套基于迈克尔逊干涉仪结构的THz干涉测量装置,实验研究了薄纸板遮挡后敲击目标镜产生的微小振动,利用相位分析法和频谱分析法对振动干涉信号进行处理,得到了振动位移随时间的变化以及不同时段振动频率的分布情况,测得的峰峰值振幅最小为7.98μm,最大为17.54μm,振动峰值速度为2.7 mm/s,振动频率最小21Hz,最大58 Hz.研究结果表明THz干涉测量技术能有效克服传统振动传感技术无法穿透障碍物的缺点,是一种简便有效的障碍物后振动传感的新型手段,预示了THz技术在振动检测相关领域的广阔应用前景.
一种高能X光转换屏的荧光光谱实验研究
X光转换屏的强度 -谱线曲线对闪光照相具有重要意义。本实验对 4号高能 X光转换屏在 X光照射下所发荧光光谱作了分析 ,文中给出了谱线图 ,以及扫描出的强度 -谱线曲线 ,并对实验结果作了分析
一种新的线成像激光干涉测速系统
设计并搭建了一种新的线成像激光干涉测速系统,用于小样品材料的冲击波诊断或飞片速度测量。系统采用梳状干涉条纹做为信号载体,利用1维光纤阵列+光电倍增管+数字示波器替代变像管扫描相机作为记录设备,记录伪推挽四路干涉信号,实现1ns时间分辨和86μm空间分辨。用它测量了脉冲激光驱动铝膜飞片的速度场,获得对比度较好的信号,数据处理结果揭示了飞片加速过程将近20ns,飞片的平面度为14.8mrad。实验证明,该线成像激光干涉测速系统具有一定实用性。
VISAR测试技术研究炸药反应区厚度
为研究炸药的爆轰过程,采用双灵敏度VISAR测试技术,在炸药后加LiF晶体作为测试窗口,直接测试了点起爆方式下TNT炸药-LiF晶体界面的粒子速度过程.结果表明:在该炸药的粒子速度曲线上出现明显的C-J爆轰点,反应区的持续时间约100ns,空间厚度约0.135mm.