双纵模双频激光干涉仪的非线性对测量精度的影响
对具有特殊后续电信号处理系统的双纵模双频激光干涉仪的非线性误差进行了研究。根据理论分析推导出了存在非线性时输出信号的表达式,并据此给出了非线性误差的表现形式是使混频输出信号产生漂移起伏,主要影响因素是偏振分光镜分光偏振度及光路调整理想程度。根据分光偏振度可计算信号最大漂移幅度及其带来的测量误差,计算出的漂移幅度值与实际观测值相近,该值可作为判断光路调整精度的一个标准,也是确定后续信号处理环节(细分辨向计数)中最大细分数的依据。
基于显微视觉的宏/微双重驱动微动台的自动标定
提出了基于压电技术的微操作系统的自动标定方法,采用混合式步进电机直接驱动的宏动平台,实现系统大行程宏动定位,安装在宏动平台上的压电陶瓷驱动的微动平台和精密光栅,实现亚微米级的分辨率和定位精度,通过以上两部分实现定位机构的全闭环反馈控制,采用显微视觉反馈获取微动台操作器在图像中的位置信息进行标定。实验结果表明:系统的动态和稳定性能良好,自动标定运算速度快,运行速度达到11 frame/s,实现了对系统的精确标定,标定精度达到0.1μm。
基于圆形压电振子的骨传导听觉装置
应用周边固支式圆形压电振子作为驱动元件,将音讯信号转换为振动信号,再利用骨传导方式使人感知音讯信号,在此基础上构建了圆形双晶片压电式骨传导听觉装置。对圆形压电振子进行了建模,利用有限元仿真分析,提出了压电振子支撑方式的优化方案。对设计的压电式骨传导听觉装置进行了实验测试,得到了骨传导装置结构参数对其性能影响的关系曲线。实验研究表明:压电式骨传导听觉装置的基本性能指标能够满足骨传导听觉装置的要求。
压电叠堆式惯性移动的机构设计与试验
提出通过改变压电移动机构和接触面之间正压力的方法改变机构不同方向的摩擦力,使机构沿规定方向运动。介绍了压电叠堆式惯性移动机构的工作机理,设计并研制了试验装置,并进行了试验研究。结果表明,机构在方波这种对称波形信号的激励下能够实现可控的正向直线运动。
双筒式减振器热力学模型
车用减振装置中双筒式减振器应用较为普遍,但其散热效果并不理想,油液的温升对密封件的影响很大,是困扰减振器可靠性设计的关键性问题。针对这种情况,建立了双筒式减振器的物理模型,分析了油液的生热机理,推导了相关传热系数和热传导方程,并考虑了辐射换热量,求解了综合热量传递表达式。通过能量守恒定律创建了双筒式液压减振器的热力学数学模型。编程分析了缸体结构尺寸和热辐射发射率对油液温升的影响规律,得出的结论可以南浦振器白旬设计榀供参考.
最小二乘向量机在自动测试设备计量参数稳定性评估中的应用
针对自动测试设备(ATE)计量参数的非线性时变,提出一种基于最小二乘支持向量机(LS-SVM)的计量参数稳定性评估方法。该方法将ATE的参数变化量建模为非线性时间序列。用径向基函数作为LS-SVM的核函数,建立计量参数非线性时变的预测模型。根据预测模型的计算结果,采用模糊层次分析法对计量参数的稳定性进行评估。仿真结果表明,该方法能够对ATE计量参数的非线性时变进行预测,从而实现ATE计量参数稳定性的评估.
加速度计在非陀螺寻北系统中的应用研究
根据加速度计及基于哥氏效应的加速度计动态寻北系统的工作原理,探讨了加速度计在该系统中特殊的应用方法:测量地球自转的北向分量、转台机械安装的倾斜角和电机的旋转速度.研究结果表明:巧妙地将加速度计应用于寻北系统中,充分发挥惯性元件的自身特点,可提高寻北系统的定位精度,对传统伺服系统的改造,也有借鉴意义.
高精度质心测量方法研究
质心测量对于空间飞行器至关重要,新型武器的研制对质心测量精度的要求不断提高。将传统的天平原理与旋转轴结合,利用传感器技术,设计了一种新型质心测量机构,提出了一种能够明显提高质心测量精度的测量方法。描述了具体测量机构的主体结构,给出了机构的测量原理、测量方法,并进行了机构对于质心测量的误差分析。结合测量设备研制,进行了误差估算,理论估算的结果最大误差为0.023 mm.采用标准样件的方法进行了实验验证,具体测量数据显示,最大误差为0.020 mm.结果表明此测量方法理论分析计算与实验结果具有较好的一致性,并达到了较高的测量精度。已采用该方法成功地研制出系列高精度测量设备,配用于相关领域。
光学瞄具出瞳直径、出瞳距离与放大率现代测试技术研究
针对光学瞄具出瞳直径、出瞳距离与放大率的现代测试要求,在分析原有传统的各种检测原理与方法的基础上,本系统采用了一种基于CCD摄像技术、精密机械技术、光学技术和计算机控制与图像处理技术的现代光学测试原理与方法。测试过程中采用CCD细分技术,提高了图像的分辨率和目标图像的定位精度。出瞳直径与出瞳距离测试精度达到0.01 mm,测试范围为1-100mm,放大率测试精度小于1%,而且大大减轻了疲劳强度。
基于互相关技术的光学系统透过率检测
提出一种基于相关检测原理的双频双光束光学透过率检测方法。该方法不仅提高了检测精度,而且可实现在亮场条件下进行检测,能取代目前采用的单通道光学系统透过率检测方法。