基于优化VMD-MCKD和谱峭度的滚动轴承复合故障诊断
针对滚动轴承振动信号中复合故障特征难以准确提取而导致故障诊断困难的问题,提出一种基于优化变分模态分解(VMD)和最大相关峭度解卷积(MCKD)结合快速谱峭度算法的滚动轴承复合故障诊断方法。利用改进麻雀搜索算法(ISSA)优化VMD和MCKD的参数,使用优化后的VMD对复合故障信号进行分解,并根据峭度准则筛选有效本征模态函数(IMF)进行信号重构,使用优化后的MCKD对重构信号进行解卷积与故障特征增强,并对解卷积信号进行包络谱分析提取故障特征频率。利用快速谱峭度算法对未提取出故障特征频率的解卷积信号进行处理,得到故障信息最丰富的频带参数并进行带通滤波处理。最后,对滤波后的信号进行包络谱分析,提取故障特征频率,从而实现故障诊断。仿真及实验结果表明所提方法能有效分离复合故障并提取出故障特征频率,有效实现了复合故障诊断。
自适应MCKD和ALIF的滚动轴承早期故障诊断
针对滚动轴承故障信号冲击成分能量往往较低,故障特征频率难以提取以及最大相关峭度反褶积(Maximum Correlation Kurtosis Deconvolution,MCKD)降噪效果受限于滤波器L和位移数M等问题,提出了一种自适应最大相关峭度反褶积和自适应局部迭代滤波(Adaptive Local Iterative Filter,ALIF)的滚动轴承故障特征提取方法。以排列熵为标准,应用步长搜寻法确定最佳的MCKD滤波器的长度和位移数,对采集的振动信号进行降噪预处理,突出被噪声所淹没的故障冲击;然后应用ALIF算法对降噪后的信号自适应分解为一组固有模态函数(IMF)分量,利用最大峭度准则选取包含故障信息量最大的分量,即敏感分量;最后对敏感分量进行包络谱分析,提取故障特征频率。仿真和试验分析结果证明了该方法的有效性和准确性。
自适应MCKD和VMD在行星齿轮箱早期故障诊断中的应用
针对行星齿轮箱早期故障信号微弱且受强背景噪声影响,致使故障信号特征频率难提取,通过自适应最大峭度解卷积(MCKD)和变分模态分解(VMD)进行早期故障特征提取。首先,利用变步长搜索,以峭度值为评判标准,搜索最优滤波器长度L;然后,将信号通过优化后的自适应MCKD算法降噪;最后,利用VMD分解降噪信号,通过包络谱进行分析,寻找故障特征频率。经仿真信号和实验信号验证,这里所提方法能够有效地提取出强噪声背景下的行星齿轮箱故障特征。
基于声音信号的微型电机故障诊断方法研究
由于微型电机体积小,其振动信号无法用常规的加速度传感器进行采集,且对微型电机的故障诊断不需要诊断出其具体故障类型,只需要判断故障是否存在,因此,微型电机故障检测初期通常采用噪声检测的方式。采用这种检测方式,提出一种基于声音信号的微型电机故障诊断方法。针对声音信号信噪比大、易受环境影响的特点,运用最大相关峭度解卷积-小波阈值降噪的方法,对声音信号中的周期性冲击成分进行增强并滤除环境噪声。采用希尔伯特变换得到信号的包络线和包络谱。根据包络线的形状和包络谱峰值对应的频率进行判断,实现了对微型电机故障的诊断。
基于EEMD与GWO-MCKD的门座起重机回转支承故障诊断
低速重载的门座起重机回转支承信号易受环境噪声影响,难以提取故障特征。为解决此问题,提出一种集合经验模态分解(EEMD)与灰狼优化(GWO)算法优化的最大相关峭度解卷积(MCKD)相结合的故障诊断方法。对回转支承信号进行EEMD分解,得到一系列本征模态函数(IMF),选择峭度最大的IMF作为最优分量;以相关峭度为目标函数,利用GWO寻找在最优分量上的MCKD的最佳参数组合;使用最佳参数组合的MCKD对最优分量进行降噪,突出故障冲击成分;对降噪后的信号进行包络谱分析,完成故障诊断。结果表明:所提方法能自适应增强故障冲击成分,有效提取故障特征。
基于MCKD和峭度的液压泵故障特征提取
液压泵早期故障信号具有非平稳性、强背景噪声、弱故障特征特点,故障特征难以有效提取。为此,提出基于自相关分析与最大相关峭度解卷积算法的齿轮泵故障特征提取方法,利用MCKD算法对采集信号去噪处理,增强信号中的原始冲击成分,提高信号的信噪比;基于峭度(或峭度绝对值,或峭度平方值)的特征信息提取方法,来度量机械信号的非高斯性程度,以表征机械设备的运行状态信息。试验结果证明:所提方法能够有效提取液压泵故障信号中的特征信息。
CEEMD和MCKD的滚动轴承早期故障特征提取
当滚动轴承处于早期故障阶段的时候,受环境噪声和信号衰减的影响,滚动轴承振动信号特征频率成分难以精确提取,并且在信噪比较低时CEEMD不能很好提取微弱故障。针对上述问题,提出了基于互补集合经验模态分解(Complementary ensemble empirical mode decomposition,CEEMD)和最大相关峭度解卷积(Maxim correlated kurtosis deconvolution,MCKD)相结合的故障特征提取方法(CEEMD-MCKD)。两种方法的结合有效解决了CEEMD分解后无法提取出淹没在背景噪声中微弱信号特征的问题,又保持了信号的完备性,避免了有用信息的损失。通过仿真和试验验证了该方法的有效性及优点。
强噪源干扰下的滚动轴承复合故障分离方法研究
针对强背景噪声干扰下的轴承复合故障难以准确分离提取,噪声与复合故障各成分间相互影响容易造成误诊或漏诊的问题,提出基于变分模态分解(VMD)及最大相关峭度解卷积(MCKD)的复合故障分离方法。首先对复合故障信号进行变分模态分解并根据峭度及相关系数准则重构信号作为前置滤噪处理,然后选取合理的滤波器长度及解卷积周期对重构信号进行最大相关峭度解卷积运算以实现故障特征分离,并结合1.5维能量谱强化信号瞬时冲击特征的优点,准确实现复合故障诊断,最后通过噪源干扰下的外圈、内圈复合故障实测信号分析验证该方法的有效性。研究结果表明VMD方法能够有效滤除噪声干扰,且其滤噪效果比集合经验模态分解(EEMD)方法的滤噪效果好;MCKD方法能够将外圈、内圈故障分离,避免复合故障各成分间的相互干扰;1.5维能量谱能够强化谱图中的瞬时冲击特...
OMCKD结合自互补Top-Hat变换的电机轴承故障诊断方法
针对电机轴承微弱故障识别困难这一问题,提出了优化最大相关峭度解卷积(optimized maximum correlated kurtosis deconvolution,OMCKD)结合自互补Top-Hat变换的诊断方法。为解决MCKD关键影响参数难以设置的问题,提出利用人工鱼群算法(artificial fish swarm algorithm,AFSA)并行搜索MCKD参数全局最优解,实现关键影响参数的自动优化调节。首先利用OMCKD方法对原始信号进行预处理,提取被噪声所掩盖的微弱特征信息,继而对解卷积信号做自互补Top-Hat变换处理,进一步抑制背景噪声干扰,强化周期性冲击特征。最后对所得结果做频谱分析,并通过分析谱图中幅值突出的频率成分判定轴承的状态。两组实测信号分析结果表明所述方法可有效用于电机轴承故障诊断,具有一定可靠性及优越性。
MCKD最佳故障周期搜索的齿轮箱故障特征提取
针对最小解熵解卷积( Minimum entropy deconvolution, MED)算法易受强噪声和野值的影响,引出了最大相关峭度解卷积( Maximum correlated kurtosis deconvolution, MCKD) 的齿轮箱故障特征提取方法,克服了MED算法的不足。然而凭先验信息选取的故障周期,可能导致MCKD解卷积效果很差,因此提出了MCKD算法的最佳故障周期搜索思路,即在合适的滤波器阶数£下,最佳故障周期的搜索可以限定于理论计算周期左右的某一范围内,使不同步距肘关于最佳周期的最大相关峭度达到全局最优,以确保了MCKD算法具有良好的解卷积效果。断齿与局部断齿故障特征提取试验结果佐证了最佳故障周期搜索思路的可行性及其效果。
-
共1页/10条