碧波液压网 欢迎你,游客。 登录 注册

基于变分模态分解和PSO-SVM的起重机齿轮箱故障诊断

作者: 杨武帮 高丙朋 陈飞 张兴合 马伟栋 来源:机械传动 日期: 2025-01-14 人气:79
基于变分模态分解和PSO-SVM的起重机齿轮箱故障诊断
起重机齿轮箱的振动信号具有信噪比低、非线性的特点,需要一定的专业知识和经验才能实现故障诊断。为了实现起重机齿轮箱的智能故障诊断,提出了一种基于变分模态分解(Variation?al modal decomposition,VMD)改进小波降噪和粒子群算法(Particle swarm optimization,PSO)优化支持向量机(Support vector machine,SVM)的智能故障诊断方法。首先,利用VMD将振动信号分解,得到不同尺度的本征模态函数(Intrinsic mode function,IMF),将分解的高频分量进行改进小波降噪后和低频分量完成信号重构;然后,提取重构信号的特征参数构建特征向量,使用核主分量分析(Ker?nel principal component analysis,KPCA)对向量降维处理实现特征信息融合;最后,利用PSO优化后的SVM进行故障识别分类。实验验证表明,基于VMD改进小波信号预处理和PSO算法优化SVM的模型具有很高的识别准确率,能够有效、准确地对起重机齿轮箱...

基于MSCNN与STFT的滚动轴承故障诊断研究

作者: 陈青艳 来源:机械传动 日期: 2025-01-10 人气:187
基于MSCNN与STFT的滚动轴承故障诊断研究
针对现有基于CNN(Convolution Neural Network)的滚动轴承故障诊断方法难以有效挖掘和利用数据中包含的多尺度信息问题,提出了一种多尺度卷积特征融合的滚动轴承故障诊断方法。加入上采样层,通过递归方式建立具有多尺度特征提取和融合能力的卷积神经网络MSCNN(MultiScale Convolution Neural Network)结构,提升模型对输入信号的理解能力。利用美国凯斯西储大学(CWRU)数据库对所提方法的有效性进行验证,采用短时傅里叶变换对滚动轴承信号进行频谱分析,将频谱样本输入到MSCNN网络中,数据分析表明,该方法能有效地提升故障的诊断精度。

基于特征融合与HPO-RVM的滚动轴承剩余寿命预测

作者: 栗子旋 高丙朋 来源:机床与液压 日期: 2024-12-18 人气:84
基于特征融合与HPO-RVM的滚动轴承剩余寿命预测
为准确预测轴承的剩余使用寿命,提出基于特征融合与猎食者-猎物优化(HPO)算法优化相关向量机的轴承剩余寿命预测方法。提取时域、频域和时频域特征准确描述轴承的退化状态,利用综合评价指标对提取的特征进行筛选得到敏感特征集;采用核熵成分分析对敏感特征进行自适应融合,得到轴承的退化特征;构建混合核函数作为相关向量机的核函数以提高模型预测性能;最后,利用HPO算法得到混合核函数的参数,将寻优得到的参数用于寿命预测模型的训练。通过对轴承加速退化数据集进行实验,结果表明:所构建的寿命预测模型优于BP、ELM、SVM等模型,构造的混合核函数模型优于高斯核函数模型,采用的优化算法优于粒子群、遗传算法等。

基于DNN-CapsNet的液压泵故障程度诊断方法

作者: 郑彪 高丙朋 程静 来源:液压与气动 日期: 2024-12-04 人气:98
基于DNN-CapsNet的液压泵故障程度诊断方法
液压泵作为液压系统中的主要动力提供者,其内部若发生故障,将对液压系统运行稳定性和可靠性产生威胁。针对其在多故障模式下的故障程度诊断问题,提出一种将深度神经网络(Deep Neural Network,DNN)与胶囊网络(Capsule Network,CapsNet)相结合的液压泵故障程度诊断方法。首先,采用DNN网络替换胶囊网络中的特征提取层来充分挖掘液压泵故障数据中的关键特征;其次,利用胶囊网络数字胶囊层中的动态路由算法更新模型参数;最后,计算输出层输出向量模长实现对液压泵多故障模式下故障程度的准确识别。通过搭建液压泵数字孪生体采集压力故障数据来进行实验。结果表明:相比于传统深度神经网络、胶囊网络,该方法对于液压泵故障程度诊断的准确率达到99.67%。

基于ECA-ResNet与CEEMDAN能量熵的轴承故障诊断

作者: 宋振军 高丙朋 庄国航 刘前进 赵恒辉 来源:机床与液压 日期: 2021-07-20 人气:188
基于ECA-ResNet与CEEMDAN能量熵的轴承故障诊断
为解决轴承故障诊断中故障分类模型参数多且泛化性能弱、故障识别率低、识别速度慢的问题,设计一种基于深度学习模型ECA-ResNet、完全噪声辅助聚合经验模态分解与麻雀搜索算法优化的支持向量机(SSA-SVM)的故障诊断方法。通过ECA-ResNet对轴承信号进行建模以提取频域故障特征;将频域特征与CEEMDAN提取的能量熵以及传统信号的时域特征共同构成特征矩阵;通过SSA-SVM进行故障类型识别。结果表明:与传统故障特征提取方式相比,所提出的轴承故障诊断方法能得到

基于KECA和BO-SVDD的滚动轴承早期故障检测

作者: 栗子旋 高丙朋 来源:机床与液压 日期: 2021-07-09 人气:161
基于KECA和BO-SVDD的滚动轴承早期故障检测
为了实现更早地检测出滚动轴承发生故障,提出一种基于核熵成分分析(KECA)和贝叶斯优化(BO)算法优化支持向量数据描述(SVDD)的滚动轴承早期故障检测方法。提取轴承振动信号的时域、频域特征以及小波包分解节点能量特征,组成多维特征矩阵;利用KECA对多维特征矩阵进行降维处理,进而提取有效特征;最后,选取轴承正常状态的特征指标训练模型,利用BO算法确定SVDD的惩罚因子和核宽度,进而得到早期故障检测模型。利用该模型对XJTU-SY数据集中不同工况下的轴承
    共1页/6条