CO2跨临界双级压缩制冷循环的热力学分析
由于臭氧层破坏和温室效应的不利影响,用自然工质替代合成工质越来越受到国内外制冷界的重视。在几种常用的自然工质中,除水和空气以外,CO2是与环境最为友善的制冷工质之一。CO2使用安全,无毒;物理化学稳定性好;单位容积制冷量大,有利于减少装置体积;在超临界条件下,它的流动传热性能好;此外,CO2容易获取,价格低廉,不需要回收,
直接接触式蓄冷循环的热力学研究
直接接触式蓄冷具有腐蚀小、无结垢、换热效率高、传热温差小等优点,通过对直接接触式蓄冷循环的热力学研究,发现直接接触式蓄冷系统比盘管式蓄冷系统具有更高的制冷系数和(火用 )效率,而其主要(火用 )损失是由压缩机引起的.另外,分析表明直接接触式蓄冷系统的(火用 )效率随过热度的增大、过冷度的减小、压缩机绝热效率的减小而减小.
空分装置利用LNG冷量的热力学分析
简介了LNG冷量用于空分装置的实际例子及其节能效果;从空分装置液化率改变和压力改变两方面对利用LNG冷量的空分装置进行了热力学分析;最后指出,空分装置利用LNG冷量可达到多产液体、节省投资和运行费用的效果。
稳态强磁场实验装置低温系统360W/4.5K制冷循环热力学分析和优化计算
稳态强磁场实验装置的超导线圈采用4.5K超临界氦进行冷却,制冷模式下,制冷机的设计容量为360W/4.5K。首先对氦制冷循环进行了热力学分析,然后以压缩机氦流量为优化对象,结合低温系统的工程要求,选取合适的参数,对制冷循环进行了优化计算。计算结果显示:液氮消耗量为28.50L/h,压机消耗功率约102KW,系统的制冷系数为0.0035。
吸附制冷过程的热力学分析及评价
运用热力学原理对吸附制冷过程进行了全面分析,推导出了各过程的热力计算公式,并在此基础上得出了性能系数COP的表达式.同时也探讨了系统的各个工作温度对循环性能的影响.结果表明,在吸附制冷过程中,适当地降低冷凝温度、蒸发温度和吸附温度,同时适当地提高脱附温度,可以提高系统的循环性能.
有限元网格划分对零件热力学分析的影响研究
网格划分在零件热力学模拟中是重要前处理环节,文中针对塑料模具型芯零件,采用了不同的网格划分方式,比对该模型有限元计算结果,讨论网格划分方式及网格密度对零件热力学分析产生的影响。
基于斯特林发动机的冷热电联产系统分析
三联产系统的节能性具有很大的潜力,对于该系统的热力学评价指标主要是一次能源利用率PER和一次能源节约率PESR。基于热力学第一定律,对以斯特林发动机为动力装置的三联产系统进行了热力学分析,结果表明:冬季工况,PER和PESR随x、η变化趋势相同,均随x、η增加而增大,一次能源节约率PESR平均可达29.7%;夏季工况,PER和PESR随x、η变化趋势相同,均随x增加而减小,随η增加而增大,一次能源节约率PESR平均可达33.15%。
R290替代R134 a热泵热水器的性能分析与试验研究
分别对R290和R134a进行了热力学分析,采用R290对R134a成熟机组进行灌注量试验,节流元件匹配试验,不同环境温度下,R290试验机组对比变工况试验。理论及试验结果表明:R290在系统中的单位制热量约为R134a的1.37倍,R290的单位理论COP值约为R134a的94.2%;R290的制冷剂充注量为R134a的30.3%;R290专用试验机组制热性能平均为R134a成熟机组的1.27倍,COP整体略高于R134a成熟机组,尤其在低温方面(-5℃,0℃),平均为R134a成熟机组的1.05倍。
带有抽水压缩气体储能装置的制冷系统
为开拓间歇式能源应用新途径,本文提出了一种复合制冷系统,该系统带有抽水压缩气体储能裟置。在储能阶段,该储能制冷系统通过水泵将电能转换为水气共容舱内带压气体的内能;释能阶段,在水气共容舱内高压气体的作用下,使其内部的水流经水轮机直接驱动制冷循环制冷,而制冷循环中冷凝器所释放的能量被水气共容舱内的高压气体全部吸收,最终完成了利用间歇式能源制冷之目的。文中建立了描述储能与制冷过程的热力学模型,并重点研究了储能和制冷过程中关键节点的热力学参数变化规律,与文献给出的储能制冷系统相比,该系统具有较高的制冷系数。为拓展间歇式能源实际应用途径提供了一种新思路。
新型蒸气压缩/喷射制冷循环的热力学分析
对新型蒸气压缩/喷射制冷循环进行了热力学分析,并对几种常见的混合工质和纯工质R12的理论计算结果和实验结果进行了比较。