多管阵列近等温压缩空气储能方法研究
针对压缩空气储能系统传热性能和压缩/膨胀效率低的问题,提出了一种多管阵列近等温压缩空气储能方法,设计了液体活塞结构与管式换热结构耦合的多管阵列压缩/膨胀机,液体活塞结构实现高压密封,管式换热结构增加换热面积以提高换热量,采用隔膜式结构实现气-液隔离避免空气的溶解,采用水箱储存压缩热并在空气膨胀时释放。建立了系统热力学模型和传热学模型,分析了多管束参数对空气压力、温度和压缩功的影响,使空气从0.8 MPa增压至5 MPa,采用1000根管、压缩时间60 s时,可实现空气压缩效率达到70%。为高压和高效的近等温压缩空气储能提供了一种新的方式。
压缩空气储能发电频率特性分析
当前阶段,我国主要的电力来源是煤、石油和天然气这三种广泛使用的传统能源。未来,我国火电发电的量将在很长一段时间内保持下降的趋势,将会难以满足调峰以及调频的需求,因此,储能是解决电力供需平衡的有效手段。压缩空气储能是一种容量较大的储能技术,在压缩空气储能技术的背景下,研究了一种将液体作为驱动介质,利用高压压缩空气进行发电的方法。在系统中建立了压缩空气的热力学模型、液压马达的数学模型以及同步发电机的数学模型,并将这些模型在Simulink中进行仿真搭建,分析了储气罐压力和马达排量对于系统中马达转速的影响,并对这些参数进行设计选取,针对马达转速波动过大无法并网发电的问题,采取传统PID的方法来减小马达的转速波动,稳定系统的输出,保证发电机的平稳运行。
液压气动专利讲坛(19) 液体活塞式压缩空气储能系统
1液体活塞式压缩空气储能系统原理图1表明,与传统的闭式蓄能器相比,开式蓄能器显著提高了蓄能器的容积能量密度,前提是要求满足等温压缩和等温膨胀的条件。满足等温压缩和等温膨胀的条件是压缩空气储能系统必须具备良好的热交换能力。在传统的活塞式压缩机中,由于活塞的高速往复运动,空气压缩产生的热量来不及通过缸壁向环境散热。
基于气-液相变的等压压缩空气储能方法研究
风能和太阳能等可再生能源具有间歇性和不稳定性的特点,不能大规模接入电网。压缩空气储能作为大规模储能技术可以调节电网负荷,削峰填谷,解决上述问题。目前压缩空气储能系统的压缩空气都是在体积恒定的容器中储存,压缩空气在释放时经过减压阀节流减压至预定的较低压力,浪费了大量的有用能,导致系统效率低,压缩空气利用率低。等压压缩空气储能通过保持压缩空气在储存和释放时压力的恒定,解决系统效率低的问题。基于质量守恒和能量守恒定律,建立压缩空气的热力学模型,采用基于气-液相变的等压方法,系统效率提高了12.18%。
一种完全基于风能的供暖系统研究
提出一种完全基于风能的供暖系统,综合利用风能和太阳能,并通过压缩空气储能系统改善风能的间歇性和不稳定性,实现系统持续供暖的功能.介绍了新型供暖系统的工作原理及构成,并以青岛沿海地区为例,设计了风力机、储气罐、热泵等设备的参数,探讨了系统的设计方法.
微小型压缩空气储能系统研究
风能、太阳能等可再生能源的非稳定输出特性对电网系统的安全运行影响很大。储能系统不仅可以调节电网负荷提高供电品质,而且可以作为应急电源。本文对不同储能方式进行了分析,研究了储存压力和流量等运行参数对微小型压缩空气储能系统输出功率与运行效率的影响,提出了风电单元配置微小型压缩空气储能系统的调控方案和需解决的关键技术,对储能系统发展和提高电网安全运行有参考意义。
带有抽水压缩气体储能装置的制冷系统
为开拓间歇式能源应用新途径,本文提出了一种复合制冷系统,该系统带有抽水压缩气体储能裟置。在储能阶段,该储能制冷系统通过水泵将电能转换为水气共容舱内带压气体的内能;释能阶段,在水气共容舱内高压气体的作用下,使其内部的水流经水轮机直接驱动制冷循环制冷,而制冷循环中冷凝器所释放的能量被水气共容舱内的高压气体全部吸收,最终完成了利用间歇式能源制冷之目的。文中建立了描述储能与制冷过程的热力学模型,并重点研究了储能和制冷过程中关键节点的热力学参数变化规律,与文献给出的储能制冷系统相比,该系统具有较高的制冷系数。为拓展间歇式能源实际应用途径提供了一种新思路。
用于压缩空气储能的微米级水雾冷却等温压缩实验研究
压缩空气储能(CAES)是一种大规模储能技术,可以用于调节城市电力供需,缓解用电高峰电力短缺,减少电网容量建设。目前,储能技术逐渐开始应用于城市,当电价下降时,采用电池储存电力,价格上升时,释放电力,利用峰谷电价差实现盈利。与电池相比,CAES容量大(100 MWh,电池小于10 MWh)、环保(无重金属污染),使用寿命长。但由于储能效率过低,通过电价差盈利空间小,投资回收期长是限制其商业应用的重要因素之一。目前,多数压缩空气储能系统都基于绝热压缩,大约有一半的电力被转化成了热量并耗散。由于压缩时空气的温度上升,导致压缩功增加,并转化得到更多的热。许多研究聚焦在增强压缩空气的散热来达到等温压缩。本研究提出将微米级(10~100μm)水雾喷入压缩空气与之混合,吸收压缩热,降低压缩空气温度,以实现等温。通过实验对压缩空气压力,...
新型大规模抽水压缩空气储能技术
风能、太阳能等间歇式新能源大规模并网发电给电力系统的安全稳定运行带来了严峻的挑战,规模化的电能存储是解决这一问题的重要手段之一。抽水蓄能和压缩空气储能技术是被国内外广泛应用和关注的大规模储能技术。本文在对这2种储能技术优势和缺陷分析的基础上,提出了一种具有效率高、响应快、一次性投资少、发电成本低的无水坝抽水压缩空气储能系统,重点介绍了非补燃式无水坝抽水压缩空气储能技术,并给出了基于大型地下洞库的应用设计实例,提出了发展大规模压缩空气储能尚需研究的关键技术,以期推动该技术在智能电网建设中的大规模应用。
带压缩空气储能系统的全液压海上风力发电系统
1风力发电机对储能的迫切要求 由于风的随机性导致风力机输入功率的随机波动为了平抑这种波动现代风力机都采用变桨控制的方法。但是由于变桨控制系统的被控对象—叶片的惯性很大因此变桨控制只能平抑慢变的风速波动对于阵风是来不及调节的。况且即使液压变桨系统有足够快的动态也不宜用于叶片的快速调节因为叶片会产生强烈的扭振大大缩短叶片的寿命。