全液压矫直机液压伺服非线性系统稳定性研究
全液压矫直机具有矫直力大,辊缝位置精度高,系统响应速度快,自动化水平高的特点,广泛应用于中厚板轧钢生产线。液压伺服系统采用了阀控缸的方法,在矫直机液压缸大行程运行时非对称阀的开口量很大,四缸之间具有一定的位置关系,此时系统是复杂的耦合非线性系统。运用李亚普诺夫第二方法证明了该液压伺服非线性系统是稳定的,通过AMEsim仿真和从现场采集到的的实验数据验证了系统非线性时的稳定性,说明全液压矫直机采用非对称阀控非对称缸是合理的,同时也为今后在其他领域验证非线性系统的稳定性提供了有力的理论依据。
浅谈液压传动系统分析的模块化思想
提出了工程机械液压传动与控制系统分析的模块化思想,分析了液压传动与控制系统的各模块关系,提出了利用模块化方法分析液压传动与控制系统的步骤和应注意的问题,并结合具体的实例,说明了模块化方法的具体应用方法。
基于卓越工程师培养的液压传动与控制课程教学改革
液压传动与控制是机械工程专业一门实践性较强的重要专业课程,对培养学生的实践能力具有重要作用。在分析当前液压传动与控制课程教学存在的问题的基础上,结合机械工程专业卓越工程师的培养目标,主要从课程教学任务,教学内容,教学方法,实验教学,师资队伍,成绩评定等方面对液压传动与控制课程改革进行了探讨,提高了教学效果和教学质量,对培养学生的工程实践应用能力具有重要意义。
液压传动与控制在板式换热器拆卸系统中的应用分析——评《液压传动》
对于工科类的许多专业来说,液压传动是一门基础专业课,由于各个专业教学内容有所不同,液压传动教材版本也有几十种。但是总体而言,液压传动的教学内容可以分为四个大类,分别是液压传动、液压传动与控制、液压与液力传动和液压与气动。由西安电子科技大学出版社出版,张军、孟利民、李宪华三人合编的《液压传动》一书作为工科教学教材,在编写时更加注重液压传动的基础知识。与此同时,该书在教材编写过程中始终贯彻理论与实际相结合、学以致用的基本原则,书中除了包含理论知识之外,也包含着各种各样的实践内容。
基于恒压液压系统的ZL50装载机节能技术
为解决ZL50装载机油耗高的问题,构建了新的液压系统。首先阐明了恒压液压系统的节能原理,引出一种新型二次调节元件——液压变压器。随后建立液压变压器排量及压力的数学模型,并在液压变压器配流盘控制角-90°~90°内仿真,分析其排量与压力特性。在此基础上构建装载机新的液压系统,分析其工作过程并与原液压系统比较,得出其节能原因。根据装载机各工况下消耗的功率来确定新液压系统主要元件的参数。在主泵转速为0~2200r/min内的仿真表明:新液压系统的装机功率约为原液压系统的43%,节能效果明显。
液驱混合动力车辆制动能回收效果
提出一种应用液压变压器搭建液驱混合动力车辆的设计概念。在其工作原理的基础上建立相关数学模型,分析蓄能器的特性参数(有效容积、比能量和充放效率等)与液压变压器配流盘控制角之间的关系。在不同恒转矩制动工况下对直接能量回收和应用液压变压器间接蓄能器的能量回收进行仿真分析,得出不同变压比下的节能参数。
液压矫直机液压伺服系统动态特性分析比较
根据矫直机矫直原理和矫直工艺要求设计了全液压矫直机液压伺服系统,在此基础上采用非对称伺服阀加位移传感器控制非对称液压缸位移的方法达到了矫直钢板.的目的。通过求解出非对称阀控制非对称液压缸的系统传递函数和非对称阀控制恒背压液压缸系统的传递函数,用Hyvos软件仿真分析液压缸两种位置控制效果。通过仿真可以发现:非对称阀控制非对称缸的控制效果明显优于非对称阀控制背压缸。同时通过现场生产样机的液压缸位置控制精度和钢板平直度证实该液压系统的设计是先进的。研究结果对非对称阀控制非对称缸的设计、仿真及控制具有指导意义。
液压滚切剪液压系统的换向冲击分析
液压滚切剪的剪切机构,建立了液压缸的力平衡方程。通过求解液压缸换向前后的两腔压力,比较对称阀控制非对称缸和非对称阀控制非对称缸两种形式的压力冲击。通过仿真软件模拟两种形式的液压缸换向冲击,可以看出非对称阀控制非对称缸的换向压力冲击较小,符合理论计算的结果。依据仿真结果设计合理的液压系统,有利于设备的安全运行。通过采集现场样机液压缸的两腔压力,证实了采用非对称阀控制非对称缸的方法能够有效地解决液压缸的换向冲击问题。
基于二次调节技术的小型装载机全液压驱动系统
介绍了全液压驱动系统的工作原理,构建了小型装载机行走和工作的全液压驱动系统,其特色在于一种新的二次调节元件液压变压器以及液压蓄能器的应用。建立了液压变压器压力比的数学模型和液压蓄能器的教学模型,并通过仿真分析了液压蓄能器特性参数与液压变压器配流盘控制角之间的关系。分析得出了所提出的全液压系统相对传统行走驱动系统的优势。
电液伺服系统位置-压力主从控制方法研究
基于主从控制理论提出一种新的阀控缸电液系统位置和压力主从控制方法。建立阀控缸系统位置传递函数后,将液压缸两腔的压力动态变化信号应用位置.压力转换公式转换为位置信号,再将转换的位置信号叠加到电液伺服系统的主位置闭环内,以实现阀控缸系统位置和压力的主从控制。通过在MAT—LAB/Simulink中搭建的仿真模型,仿真分析该方法的控制效果,结果表明该控制方法正确可行。通过分析现场样机矫直钢板时液压缸的位置和压力信号,证明电液伺服系统位置.压力主从控制方法可以实现位置、压力不同变量的在线主从控制,提高了系统的响应速度和控制精度,为其他电液伺服系统的设计研究提供理论基础。