基于机理的磁流变减震器滞回特性魔术公式模型
为了发展一种新的、简单通用的磁流变减震器模型,以适用于半主动悬架的动力学分析与控制。通过对磁流变减震器进行运动学和流变学分析,将减震器的作用力分为剪切项、黏性项、摩擦项、弹性项和惯性项。对于其中表征磁流变液特性的剪切项,使用魔术公式进行描述,变化魔术公式中的系数可以适应不同使用工况,达到精度和适应性的统一。以魔术公式描述剪切项是该文的特色,因此将所提出的模型称为魔术公式模型。通过参数辨识获得各项参数与施加电流的关系,建立起磁流变减震器滞回特性魔术公式模型。该模型形式简单、参数一致且参数物理意义明确,方便用于半主动悬架系统动力学分析与控制器开发。通过试验数据与仿真结果对比,证明模型有较好的精度和适用性。
磁流变液技术在汽车减振器中的应用
随着科学技术和社会经济的发展,人们对汽车性能也提出了更高要求,而悬架是改善车辆行车操作性和乘坐舒适性的关键部件之一。基于磁流变减振器的半主动悬架由于其一些优越的特性,将半主动悬架技术推向了新的高度,逐渐成为现代汽车悬架系统研究的最佳选择。文章概述了基于磁流变减振器半主动悬架的特点,阐述了磁流变液的组成、制备、工作模式和性能要求,调研了磁流变液的国内外发展现状,并且结合现有研发技术和未来需求,对磁流变液的研发工作提出了一些建议和展望。
基于ADAMS的载重汽车半主动悬架磁流变减振系统研究
为改善车辆悬架系统的刚度和阻尼特性,通过分析载重汽车半主动悬架系统的运动,建立了半主动悬架磁流变减振器阻尼力设计模型,确定了磁流变阻尼器的结构参数、控制策略,应用ADAMS软件仿真分析了磁流变连续可变阻尼半主动悬架的动力学响应。仿真结果表明,磁流变阻尼器具有很好的阻尼减振效应。利用磁流变液体的表观黏度随外加磁场变化阻尼可变的特性,控制半主动悬架的刚度和阻尼规律,实现了载重汽车的自适应减振,有效改善了车辆的行驶平顺性及操纵稳定性。
基于电磁阀式阻尼连续可调减振器的半主动悬架试验研究
研制了一种电磁阀式阻尼连续可调减振器,并在此基础上进行了半主动悬架整车试验研究。阐明了系统结构和工作原理,通过台架试验测试了电磁阀的外特性和减振器阻尼力在不同电流下的速度特性,并开展了实车道路试验。试验结果表明:该电磁阀式减振器可以较好地实现阻尼力的调节,且对整车行驶平顺性、操纵稳定性的提高具有积极作用。
电磁阀控制减振器的性能分析与试验研究
研究了一种电磁阀控制的阻尼连续可变减振器,阐述了该减振器的结构形式和工作原理,对其外特性进行了理论分析。通过试验检验该减振器的性能,建立了阻尼力与输入电流之间的关系。试验结果表明,该减振器理论分析与试验结果相吻合,将该可调阻尼减振器应用于半主动悬架控制系统,可以获得良好的振动特性,改善车辆的性能。
基于电磁阀减振器的1/4车辆半主动悬架非线性控制
在电磁阀减振器力—速度特性试验基础上,针对电磁阀减振器1/4车辆半主动悬架非线性特性和电磁阀减振器可调阻尼力输出饱和特性,提出一种基于输入饱和的滑模控制策略。建立半主动悬架1/4车非线性模型和输入简化的悬架参考模型。设计半主动悬架1/4车非线性模型滑模控制器,同时考虑电磁阀减振器阻尼力存在的输出饱和特性,设计辅助分析系统,产生控制补偿信号对滑模控制器进行饱和补偿。Matlab/Simulink仿真与台架试验结果表明:设计的输入饱和滑模控制器能有效消除电磁阀减振器输出饱和特性影响,使电磁阀减振器半主动悬架车身垂向加速度、悬架动挠度等性能指标很好地跟踪或接近悬架参考模型理想输出,优化电磁阀减振器半主动悬架非线性控制与设计,有效改善车辆乘坐舒适性。
电磁阀控制半主动悬架可调减振器的研制
建立了某越野车7自由度模型,分析了该车辆在直线行驶、加速一制动以及转向工况下悬架阻尼变化对车辆稳定性和乘坐舒适性的影响。研制了电磁阀控制阻尼可调减振器。并进行了减振器示功试验、速度特性台架试验,得出被动减振器及可调减振器的示功图和速度特性曲线。结果表明,该可调减振器的软、硬阻尼力随速度的变化有明显的区别,说明基本达到了阻尼的软、硬可调。
液压互联馈能悬架特性分析与试验
针对互联悬架能耗过大却不能回收悬架振动能量的问题,提出了一种液压互联馈能悬架系统。阐述了液压互联馈能悬架的结构及工作原理,建立了AMESim动力学模型,并设计了恒流馈能电路,研究了在正弦路面与随机路面输入激励下的动态性能,并在此基础上进行了台架试验,试验与仿真结果基本吻合。结果表明:与未加入恒流电路控制的液压互联悬架相比,采用恒流电路控制的液压互联馈能悬架具有更佳的整体动态性能,其侧倾角加速度、车身垂直加速度均有所下降,并在此基础上实现了对车身振动能量的回收,为液压互联馈能悬架的模式切换控制提供了理论基础。
一种可进行阻尼试验的双横梁汽车悬架振动试验系统的研制
基于现阶段汽车悬架领域、阻尼领域试验器械功能不完备的现状,设计了一种可进行阻尼试验的双横梁汽车悬架振动试验系统,并介绍了其整体结构,建立了1/4汽车悬架的模型,分析了半主动悬架研发及性能测试、典型阻尼器动力学性能标定的原理。该试验系统具有体积小、控制精度高、功能丰富并成本低廉的特点,能够简化主动、半主动悬架研发的过程,缩短研发周期,满足大部分汽车悬架试验、阻尼试验的试验需求。
EHA半主动悬架自适应Smith预估时变时滞补偿控制
由于传统Smith预估补偿控制对采用电动静液压作动器(Electro Hydrostatic Actuator,EHA)半主动悬架只能进行临界时滞时间的补偿,设计了一种自适应Smith预估时变时滞补偿控制器。通过计算含时滞半主动悬架系统的临界时滞,结合小时滞下悬架系统不会发生失稳的条件,得到了含时滞EHA半主动悬架时滞的时变特性,并验证了该时滞补偿控制器对时变时滞补偿的有效性。利用模糊控制算法求取了含时滞EHA悬架的半主动控制力,并进行了时变时滞补偿。建立了含自适应Smith预估时变时滞补偿控制的EHA半主动悬架仿真模型,并进行了对比仿真分析。结果表明,当时滞为0.05s和0.1s时,自适应Smith预估时变时滞补偿控制下的悬架簧载质量加速度和轮胎动载荷的均方根值分别改善了14.6%,5.5%和29.5%,15.5%;相比于传统Smith预估时滞补偿控制,时滞补偿效果分别提高了39.7%,41%和18%,55%.