基于CEEMDAN样本熵与PNN的行星齿轮故障诊断
为对行星齿轮进行故障诊断,采用自适应噪声完备总体经验模态分解(CEEMDAN)方法对采集的信号进行分解。对分解得到的各IMF分量进行相关系数计算,优选出与原始信号相关性较大的前4阶分量进行样本熵计算,得到特征值,构成特征向量。将特征向量输入到概率神经网络系统中进行诊断,且与基于局域均值分解的样本熵特征提取方法的诊断结果进行对比。结果表明:利用CEEMDAN样本熵提取的特征值能更精准地反映系统的故障特性,故障诊断的正确率高。
基于PSO-FC优化KPCA的特征提取及行星齿轮磨损损伤程度识别
行星齿轮传动系统发生故障时,其信号传递中相互耦合,呈现非线性的特性,使得行星齿轮的故障类型及损伤程度难以识别。借鉴模式识别中Fisher准则(FC)判别函数,构建核函数尺度参数优化的数学模型,应用改进的粒子群优化方法对其寻优,充分改善核主元分析法(KPCA)对于非线性问题的分析性能,将其应用于行星齿轮的磨损损伤程度的识别和诊断中。实例分析结果表明,基于PSO-FC智能优化后的KPCA改善了特征空间内数据分布结构,在行星齿轮的磨损损伤程度识别中取得了较好的尺度聚类效果,可以有效地解决复杂机械传动中损伤边界模糊、损伤程度难以识别的问题。
-
共1页/2条