沿轴向截面突变的圆柱形钉肋肋列传热的熵产分析
对沿轴向截面突变的圆柱形钉肋的热力学性能做了综合理论分析,研究了其传热过程因传热和摩擦损失引起的不可逆熵瓣变化特点,对3种肋结构做了比较。
接触角测试技术及粗糙表面上接触角的滞后性Ⅱ:粗糙不锈钢表面接触角的滞后性
应用躺滴法结合CCD数字影像技术研究粗糙不锈钢表面上的接触角滞后现象.结果表明:随表面粗糙度的增加,前进接触角增大,后退接触角减小,滞后性增加,且以90°的Young接触角为界,前进接触角和后退接触角随表面粗糙度的变化趋势不同;同时滞后性随液相表面张力的增加而增强.这些实验结果和观察与此前提出的滞后张力模型预测一致,实际表面接触角滞后现象的研究对于推动气液相变的诸多子过程的深入理解具有十分重要的意义.
高真空多层绝热低温容器完全真空丧失后传热及绝热夹层内温度分布规律实验
在搭建了高真空多层绝热低温容器完全真空丧失传热研究实验台的基础上,分别利用干燥氮气、二氧化碳、氧气、氦气及空气为破空介质,进行了高真空多层绝热低温容器发生完全真空丧失事故后的传热实验研究。实验中通过流量计和温度采集系统测得了高真空多层绝热低温容器在发生完全真空丧失事故后的排放率和绝热夹层内的温度分布规律。实验结果表明,导入高真空多层绝热低温容器绝热夹层的气体种类对其完全真空丧失后的传热过程有很大的影响。
基于传热原理的高温蒸汽流量测量研究
提出了一种基于传热原理高温蒸汽流量测量的新方法,分析了测试原理的可行性,并建立了依据该测试原理进行流量测量的实验台.实验结果表明,基于传热原理流量测量方法所依据的测试原理是正确的.由于该流量测量方法将流量测量问题转化为温度测量问题,因此测量误差主要取决于温度测量的准确度.
插入式热式气体质量流量计的研究
提出了一种新型的插入式热式质量流量计的设计和标定方案。详细阐述了插入式热式气体质量流量计的设计原理,通过对准则关系式的处理得到了适用范围广、形式简单的流量表达式。分析了在制作过程中影响其精度和标定的因素,并在系统热平衡分析的基础上,提出了在传热过程中减少热损失的措施。用直接测量法对流量计进行了标定,实验结果表明,采用导热系数与密度之比较大的石墨作为传感器探头的填充物质能有效地提高流量计的响应速度,该流量计能够精确测量气体质量流量。
微反应器的设计与应用
由于传质传热效果优异、反应选择性好、安全稳定等优势,微反应器已经被广泛应用于学术研究和工业应用的众多方面。研究归纳总结近几年微反应器的设计与应用,首先介绍微反应器的制作材料及其加工工艺,其次总结微反应器通道设计强化传质和传热的常用方法,然后介绍微反应器的最新应用进展,包括合成有机化合物/聚合物、纳米颗粒、能源物质以及生物医药等,最后对微反应器的设计和应用进行总结和展望。为微反应器的选材、加工制造、优化设计以
用于压缩空气储能的微米级水雾冷却等温压缩实验研究
压缩空气储能(CAES)是一种大规模储能技术,可以用于调节城市电力供需,缓解用电高峰电力短缺,减少电网容量建设。目前,储能技术逐渐开始应用于城市,当电价下降时,采用电池储存电力,价格上升时,释放电力,利用峰谷电价差实现盈利。与电池相比,CAES容量大(100 MWh,电池小于10 MWh)、环保(无重金属污染),使用寿命长。但由于储能效率过低,通过电价差盈利空间小,投资回收期长是限制其商业应用的重要因素之一。目前,多数压缩空气储能系统都基于绝热压缩,大约有一半的电力被转化成了热量并耗散。由于压缩时空气的温度上升,导致压缩功增加,并转化得到更多的热。许多研究聚焦在增强压缩空气的散热来达到等温压缩。本研究提出将微米级(10~100μm)水雾喷入压缩空气与之混合,吸收压缩热,降低压缩空气温度,以实现等温。通过实验对压缩空气压力,...
印刷电路板式换热器传热与流动研究进展
印刷电路板式换热器是适用于高温高压等苛刻条件的高效紧凑式换热器,在新一代核电、光热发电、氢能领域呈现出潜在应用前景.本文综述了国内外印刷电路板式换热器传热与流动数值模拟研究、试验研究,列出并对比了相关研究中得到的传热与流动准则方程.指出了目前印刷电路板式换热器数值模拟局限于设定恒定边界条件,单层通道传热与流动的试验局限于低雷诺数范围,样机传热与流动试验局限于单相工质.展望了印刷电路板式换热器传热与流动进一步研究方向.
装载机液压系统的传热仿真分析
为解决装载机夏天工作中液压系统过热问题,提出了将集总参数法用于液压系统解决传热问题的方法。采用集总参数法,建立液压系统传热问题的RC网络传热模型,编制计算程序。对某50型轮式装载机液压系统传热进行了仿真计算,并比较了仿真结果和试验数据。结果表明:采用集总参数法研究装载机液压系统的传热问题,其仿真结果的精度能够满足工程要求,模型的准确度满足工程设计需要,对液压系统的设计和改进具有指导作用。
冰浆流动及传热特性研究进展
通过综述近年冰浆流动特性方面的研究,介绍不同的冰浆模型,并讨论冰浆在管内流动的压降及流型。然后从冰浆导热系数开始,综述冰浆的传热特性,讨论不同表面换热系数和相应的Nusselt数,为研究冰浆的流动和传热特性提供借鉴。