液力偶合器气液两相流动的数值模拟与粒子图像测速
为了更加真实地反映偶合器内部的气液两相流动机理,该文应用计算流体力学(computational fluid dynamics,CFD)对其内部流动的速度和压力等流场特征进行数值模拟,并应用粒子图像测速(particle image velocimetry,PIV)技术对其流场进行了测试,试验结果表明:泵轮内的气泡小而均匀,速度分布较规律,由内环向外环递增;涡轮内气泡较多,并出现了涡流、回流、二次流等不规则流动现象。PIV测试的流场流动趋势与数值模拟的流场流动趋势基本一致。CFD数值模拟方法和PIV技术为揭示液力偶合器内部流场的复杂流动提供有效的解决途径。
YJ350液力变矩器性能改进研究
根据新型发动机对YJ350液力变矩器的匹配要求,对其进行改 进.首先,修改循环圆参数,适当减小直径比和形状系数;其次,综合考虑叶片进出口角度对性能影响,对叶片进出口角度进行改进;最后采用基于二次函数环量分 配的设计方法设计叶片.对新型YJ350液力变矩器三维流动进行数值模拟,得到内部流动速度与压力数值解,基于流场数值解预测其性能.将新型YJ350液 力变矩器预测性能与原变矩器性能进行对比,结果表明改进后的液力变矩器满足新的匹配要求且性能明显提高.
YOXy型液力偶合器研制
在YOX型液力偶合器的基础上,设计并试制了YOXy型液力偶合器,经台架性能试验和装于带式输送机运行试验结果表明,YOXy型液力偶合器的性能比YOX型有明显改善. 查看全部>>
不同扁平率无内环液力变矩器设计与性能分析
提出一种扁平化无内环液力变矩器,研究不同扁平率和有无内环对其性能的影响。采用基于椭圆的扁平循环圆设计方法,设计3种不同扁平率的无内环循环圆且叶形为空间扭曲的扁平化液力变矩器。利用CFD软件对不同扁平率的无内环变矩器进行数值模拟,分析了内部流场的压力和速度分布,得到了扁平率和有无内环对变矩器流场和性能的影响规律。
冲焊型液力变矩器叶片成形的精密控制
为避免传统叶片制造过程中反复修模、试模问题,本文提出了一种对带有加强筋和折边的YJC265冲焊型液力变矩器泵轮和涡轮的叶片成形进行精密控制的方法。该方法能够预测出叶片制造过程中出现的回弹量,并按计算结果补偿叶片模具型面,得到理想的叶片冲压件;又通过成形回弹计算与模具补偿方法,制造了YJC265液力变矩器样机,且样机性能试验结果超过了设计要求,生产周期和成本远远小于传统方法。本文提出的方法能够保证叶片回弹的精度,指导叶片模具设计,保证模具开发的一次成功率,对变矩器叶片的实际生产具有重要意义。
冲焊型与铸造型液力变矩器性能对比分析
为深入了解铸造型与冲焊型液力变矩器的性能差异及其产生原因,结合CFD(computational fluiddynamics)技术的发展,基于相同循环圆、相同叶栅角度设计出2种制造工艺的液力变矩器.采用CFD软件对液力变矩器内部流场进行数值模拟,得到其内部流动特性和外部特性.对计算结果进行深入对比与分析,得到2种制造工艺对液力变矩器性能的影响规律.
修正能头损失的变矩器性能预测方法
液力变矩器的性能预测对于自动变速器的设计有着重要的意义.一维束流理论尽管在预测变矩器内流场方面存在一定缺陷,但是由于其参数调节简单,便于优化设计,所以在设计过程中仍然广泛使用.本文在传统束流理论基础上,修正了能头损失的计算方法,对比计算结果表明,修正后的性能预测方法大大提高了精度.
液力变矩器内部流场的激光切面法初步测量
文章首先介绍了粒子成像测速(PIV)技术的原理、应用,其次对实验时所用到的实验装置、用品、所应注意的事项,作了详尽的说明,最后用PIV技术对液力变矩器泵轮内部流场进行了初步测试,并对测试结果进行了量化处理和分析,为进一步的理论、实验研究提供了参考.
液力耦合器三维瞬态流场大涡模拟与特性预测
采用大涡模拟、流动控制方程耦合求解法及多可动区域计算的滑动网格法,对液力耦合器内部瞬态三维流动控制方程组进行了耦合求解。对三维流场模拟结果进行深入分析,以进一步了解耦合器内部流动规律,优化设计其结构。同时,根据三维流场数值解计算了各个工况下液力耦合器叶轮转矩,进而预测其性能,将性能预测结果与实验结果进行比较,二者误差在7%以内,验证了大涡模拟方法及特性预测的准确,说明采用的液力耦合器流场的模拟方法具有良好的工程应用价值。
多流动区域耦合算法在液力元件中的应用
讨论了多流动区域耦合算法及其在液力元件中的具体应用,给出了液力变矩器和液力偶合器的不同转速、多叶轮流场耦合计算的应用实例。计算结果表明:多流动区域耦合算法比液力元件通过上下游传递边界条件的单个叶轮算法更为先进。基于三维流场数值解计算出液力变矩器与液力偶合器特性,将其与试验结果进行对比后可知,多流动区域耦合算法具有更高的计算精度。