反映路谱对车辆制动性能影响的轮胎模型
分析了不平路面上车辆制动时轮胎与路面相互作用时的变化特点,建立了一种能反映在接地印迹上路面不平度对车轮垂直力,制动力及地面制动力矩变化影响的非线性时变轮胎模型,阐述了非线性时变轮胎模型的主要特征。运用非线性轮胎模型仿真计算了不平路面上汽车的制动过程,其仿真计算制动加速度变化与汽车实际制动过程中的变化有相同的规律性,通过仿真计算,说明本文所建立的非线性时变轮胎模型对不平路面上车辆的制动性能仿真研究具有重要意义。
轮形阵列波束形成的优化设计
基于波束形成方法的噪声源识别中,阵列性能影响着声源识别的效果。针对轮形阵列,采用正交试验的方法,对阵列的几何参数进行优化设计。通过逐步缩小参数最优值的取值范围,使在传声器数目和阵列尺寸一定的情况下,阵列的声源识别效果得到改进。经优化,轮形阵列的最大旁瓣水平曲线在很宽的频率带上保持在16 dB以下,比普通轮形阵列的最大旁瓣水平降低了3 dB以上。验证了正交试验方法在阵列优化设计的可行性,为波束形成装置的开发提供了理论依据。
风机非稳态噪声信号分析
基于小波包变换理论,提出一种在能量比-频带二维坐标空间内分析非稳态信号频率特性的方法,并与常用频谱分析方法结果做了对比,说明该方法的正确性和可行性。接着以燃料电池汽车的风机噪声信号为例,选取一个低频正弦干扰信号作为其他各种周期信号的代表,证明该方法可以识别出非稳态信号中掺杂的周期信号。最后重点分析风机噪声信号,成功把信号中低频振动噪声与高频气动噪声进行分离,分别提取时域信息,分析并提出进一步降噪的措施。
燃料电池汽车空辅系统噪声有源控制技术
燃料电池汽车(FCV)的动力系统及噪声特性与传统汽车相比有着很大差异,其中空气辅助系统已成为主要的噪声源.虽然有源噪声控制(ANC)是近年来的研究热点;但是,由于噪声源与环境的时变性,对空辅系统的中低频段噪声更有效的对策是使用自适应有源噪声控制技术(AANC).在归纳总结有源噪声控制技术的发展进程及基本原理的基础上,阐述近年来有源噪声控制的研究现状,并重点分析关注自适应算法的研究进展;由此对自适应有源噪声控制在燃料电池汽车空辅系统减振降噪方面的应用前景进行预测和展望.
基于遗传算法和LQR的主动动力吸振器优化
动力吸振器作为抑制特定频率范围内结构物过大振动的有效装置,一直是理论研究和工程应用中的热门课题.本文针对在工作环境比较复杂噪声信号较多的情况下,在频域时域内分别采用遗传算法和LQR的控制方法,对主动动力吸振器进行了优化,数值计算结果表明,说明经过遗传算法优化,再经过LQR的控制系统能较好的适应噪声信号较多的情况.
基于试验的车用爪极发电机噪声源识别与分析
针对某型车用爪极发电机的噪声问题,基于试验对其噪声源进行了识别与分析。首先,测试了该型号4台不同结构(是否带风扇)的爪极发电机在空载和负载时的振动噪声;然后,利用阶次分析的方法识别了机械噪声、气动噪声和电磁噪声,并通过流场仿真和电磁场理论解释了气动噪声和电磁噪声产生的机理;最后,对各噪声源的贡献量进行了分析。结果表明:爪极发电机电磁力会产生6k(k=1,2,…)阶电磁噪声;冷却风扇、转子和开槽定子均会产生气动噪声;电机运行时中低转速以36阶电磁噪声为主,高转速阶段以8,10,12阶气动噪声为主;机械噪声由于其幅值较小,对总体噪声影响不大。本研究对发电机的设计和优化具有一定的指导意义。
叶片参数对旋涡风机性能的影响
应用动量交换理论以及由此推导出的数学模型预测了旋涡风机的性能,包括压头系数、水力效率。此外,还分析了不同叶片厚度和叶片数目对旋涡风机性能的影响。计算结果与文献中实验结果相符。通过此分析,给出了一个最优叶片数目。本文使用Ansys Workbench工具对不同厚度的叶片进行了疲劳分析,提供了可以减轻风机质量并保证机械性能的合理叶片厚度范围。这些结果为未来旋涡风机的设计提供了合理的依据。
考虑电动轮转矩波动的汽车悬架液压衬套设计
悬架衬套作为汽车振动的重要传递部件对于衰减汽车振动有着重要作用,在轮毂电机驱动电动汽车中,电机的转矩波动会引起车身的宽频纵向振动,传统的橡胶衬套因在宽频范围内阻尼特性变化不大,无法在特定的频带上产生大阻尼来迅速衰减振动。引入液压衬套可以衰减电动轮悬架中特定频带的转矩波动激励,首先建立了能够准确描述液压衬套力学性能的有限元模型,然后对液压衬套进行了力学性能敏感因素分析,最后根据敏感因素分析结果和振动传递特性对液压衬套进行结构参数设计,结果表明通过合理设计液压衬套的橡胶剪切模量、惯性通道横截面积和通道数量等参数,可以显著减小驱动电机转矩波动对车身纵向振动的影响,使车身纵向力振动在0~120 Hz范围内衰减13.4%。
-
共1页/8条