液电混合高能效直线驱动系统控制及仿真分析
现有电液控制系统为控制液压缸位置,采用比例阀或伺服阀,造成了非常大的节流损失。为改善能效,提出了一种采用电-机械执行器和液压缸的新型液-电混合驱动系统,电-机械执行器用于控制负载运行速度和位置,主要克服惯性力;液压缸主要克服外负载力。为了抑制二者之间的耦合影响,电-机械执行器采用位置闭环控制,并在转矩环补偿干扰力。控制阀主要起液压缸换向作用,节流损失很小,以设定的电-机械直线执行器输出力阈值为基础,通过调节泵压力(液压缸进油压力)或阀开口(液压缸回油压力)控制液压缸输出力。研究结果表明,所提系统具有与阀控缸系统相同高的控制精度,并可大幅减小节流损失。与阀控缸系统相比,液电混合驱动系统能效提升了43.1%。
液电混合装载机行走驱动系统动能回收与再利用
装载机装卸作业过程中,行走系统频繁启制动,带来系统能耗高且驱动电机装机功率大的问题。提出一种液电混合装载机行走节能系统,阐述了其工作原理并设计了液压再生制动策略和能量辅助启动策略以协调电机和液压泵/马达的动力总成部件,在Simulation X中建立了仿真模型。结果表明,此方案有效回收和再利用了装载机行走的制动动能,驱动电机的峰值功率降低约39%,一次完整作业能量消耗减少约29%。
闭式泵控新型液压-机械执行器位置控制特性
滚珠丝杠具有高精度、阻力小、效率高等优点,是工业上常见的变回转运动为直线运动的执行机构。为使其充分结合液压系统功重比大的特点,提出了一种新型的液压-机械执行器系统,该系统在电动缸的基础上,采用液压马达替代电动机驱动滚珠丝杠,并推导出其数学模型。在多学科仿真软件SimulationX中建立了该系统的物理模型,对系统的闭环位置控制特性进行了仿真研究。结果表明:闭式泵控新型液压-机械执行器系统可以实现快速、准确、稳定的位置控制;当正
新型液压马达-机械直线执行器的运行特性
单出杆液压缸作为工程机械中最常见的液压执行器,由于其两腔面积的不对称性,造成了流量不匹配等问题;电动缸通过伺服电机驱动滚珠丝杠,解决了单出杆液压缸面积不对称的缺点,但受电机功率密度低的影响,难以满足重载工况下输出低速大扭矩的要求。针对上述问题,提出采用液压马达代替电动机驱动滚珠丝杠的方案,并通过开式泵阀分段控制方式对新系统进行闭环控制。结果表明:新系统可以实现快速、准确的位置控制;推杆在进给和回程阶段,压力、流量
轴向柱塞泵配流盘非死点过渡区特性优化
针对三配流窗口非对称轴向柱塞泵在非死点过渡区配流转换产生较大的流量和压力冲击问题,提出一种采用额外油道将非死点过渡区高压油预泄至上死点过渡区的新型配流盘结构,不仅可降低流量脉动和压力冲击,而且过渡区高压油液得到再利用,提高液压泵能效。首先设计新型配流盘结构,理论分析了新型配流盘工作原理,并建立基于新型配流盘的非对称轴向柱塞泵仿真模型,分析油道半径和分布位置对轴向柱塞泵流量脉动的影响,研究不同负载情况下新型配流
泵控差动缸系统带负载力补偿量速度/位置复合控制方法
为提高泵控差动液压缸系统运动过程的平稳性及控制精度,提出了带有负载力补偿量的速度/位置复合伺服控制策略,确定了速度前馈控制量计算模型和负载力补偿量计算模型。为实现速度控制和位置控制的平稳切换,对切换参数及切换时机进行了研究,以实际位置相对目标位置的差值作为切换参数。建立系统的仿真模型和物理试验模型,对系统进行仿真和试验研究,仿真结果和试验结果都表明,采用速度/位置复合控制策略可以实现对泵控差动缸系统的速度和位置的同时控制,在保证控制精度的前提下有效提高了差动缸的运动平稳性。为便于比较,还对泵控差动缸系统单独的位置伺服控制进行了仿真和试验研究,对比结果表明,所提出的复合控制策略具有明显的优越性。
变速泵控挤压机挤压针定位系统的分析及仿真研究
用变转速泵控制液压执行器是目前电液控制技术中一种新的控制方式。该文在分析挤压机挤压针位置跟踪控制过程的基础上,提出用变转速泵控系统代替现有的阀控系统以达到节能的目的。给出了采用变转速泵按闭式回路控制挤压针位置的原理,建立了系统的数学模型,对比阀控系统,进行了计算机数字仿真研究。
插装式比例节流阀动态响应的影响因素
插装式比例节流阀系统中叠加了位移反馈环节构成电闭环控制介绍插装阀的结构及其工作原理并应用仿真软件Simulation X建立插装比例节流阀仿真模型。通过仿真模型分析了主阀芯面积增益、主阀控制腔体积、先导阀弹簧压力等重要的结构参数对比例节流阀动态响应的影响从而优化节流阀结构参数使比例节流阀具有主阀开关响应速度快、超调量小、稳态误差小等良好的动态响应特性。
基于LUDV系统纯电驱液压挖掘机能耗特性分析
为克服发动机效率低、污染严重、调速性能差的问题,提出了一种基于LUDV系统和变频电机的液压挖掘机系统方案。建立了液压系统、机械结构及变频电机的仿真模型,以及电动液压挖掘机的联合仿真模型。采用变频电机与变量泵复合控制方法,设定电动液压挖掘机"泵排量目标值"("泵排量目标值"是液压泵目标排量值与液压泵最大排量的比值,是液压泵实际排量的控制目标,不是将液压泵的排量固定在某个数值)分别为0.9、0.7、0.5。研究表明,随着"泵排量目标值"的减小,电机转速提高,耗电量减小;当"泵排量目标值"减小到某个值时,耗电量不会随着"泵排量目标值"的减小而降低,耗电量达到最小值。
高速开关阀特性试验研究
高速开关阀作为实现电液数字控制技术的关键元件,其工作特性关系到整个系统的工作性能。对目前国内普遍使用的HSV高速开关阀进行了试验研究,分析了卸荷电路、载波频率、供油压力等对高速开关阀动静态特性的影响。结果表明:该阀具有较快的开关响应和良好的线性控制范围。