大口径光学元件检测中的主要误差及其影响
使用PSD作为大口径光学元件的质量评价标准,为保证检测系统的精度,标定了作为测试系统的大口径相移干涉仪的系统传递函数,并讨论了在对ICF驱动器中所使用的光学元件进行检测时产生的两种主要误差,即:由于放置倾斜导致的低频误差和由干涉条纹引入的高频误差。同时还分析了这些误差在进行计算和分析时可能造成的影响以及消除的方法。
支撑面积对薄镜面形影响的研究
为了降低大口径光学元件的体积和质量,薄型镜面已被广泛应用于各类天文望远系统和高功率激光系统。对薄型镜面进行合理的支撑是一个必须解决的问题,支撑系统的设计对光学成像质量以及光传输过程都有明显的影响。针对多点支撑情况下,支撑单元大小对薄型光学元件面形的影响进行了分析,建立了圆口径薄型光学元件的有限元分析模型,计算了支撑单元大小不同情况下光学元件面形的P-V、RMS值以及PSD曲线,分别从空间域与频率域上得到了支撑单元大小与镜面面形畸变之间的响应特性,根据计算结果,给出了不同的光学系统选择支撑单元应遵循的基本原则。
大口径元件面形对离散支撑的频域响应特性
针对口径为600mm的薄型镜面在多点支撑情况下,分析了不同支撑方案的元件面形在频率域的响应特性,建立了离散支撑单元的1维梁模型,讨论了峰谷值、均方根值分别作为支撑方案优化目标函数的可行性,计算结果说明峰谷值、均方根值均不能正确评价面形在频率域的响应。分析了支撑单元的间距和大小对频率域的响应特性。根据计算结果,给出了理想支撑方案:中心支撑单元直径10mm,外侧支撑单元直径10mm,支撑单元间距125mm。
使用子孔径拼接法检测大口径光学元件
为了解决大口径光学元件检测过程中成本高、空间分辨率低这两个主要难点,提出了使用小口径、高精度干涉仪分次检测大口径元件,然后通过优化算法将检测结果进行拼接处理,最终得到原大口径元件波前信息的方法,并作了初步的拼接模拟实验,确认了这一方案的可行性.
光学镜面多点支承技术初步研究
从弹性力学理论出发,分析了弹性板状材料的小挠度弯曲问题。基于弹性力学的基本假设和分析步骤,利用差分法对光学镜面在自重情况下的弯曲变形进行了详细分析,建立了简支条件下的弯曲分析模型。针对各向同性圆形光学镜面做了具体的模拟计算,对圆形镜面的多点支承问题进行了初步研究。
子孔径拼接干涉检测中去倾斜处理技术
倾斜放置对大口径光学元件的检测有很大影响,为了防止在子孔径拼接干涉检测中倾斜所导致的数据丢失等严重后果,并且实现不同次检测的结果可以相互比较,提出了一种软件修正倾斜量的方法.通过对读出的图形数据进行反向倾斜来降低检测中的元件倾斜程度,避免了实际检测过程中手工操作无法达到极小角度修正的困难.通过实验,验证了该方法的可行性和有效性,实现了大口径光学元件正确的子孔径拼接检测,完成了多次检测结果之间的相互比较,结果表明,残差平均值仅为0.12λ(λ=633nm).
大尺寸球面数字刀口检测技术的研究
介绍了数字刀口检测原理,建立了检测装置,编制了运算软件,对φ125~150mm口径的球面镜进行检测,获得了面形分布.通过与干涉仪测量结果相比较,验证了数字刀口检测方法的可行性,为镜面误差的加工修正提供了依据.
大型光学镜面的多点支撑方案分析
在大型光学系统中使用薄型镜面以减轻大口径光学镜面的重量,但由于薄镜面在重力作用下形变严重,需要选择适当的支撑方式来维持光学镜面的面形。通过对支撑方式的分析,采用有限元仿真,讨论了支撑点分布方式、支撑分布位置和支撑点数三方面对镜面形变的影响,从而得出支撑点均匀分布优于非均匀分布;支撑点数一定时,镜面形变主要由支撑点位置决定;10个支撑点以上镜面形变相对较小,继续增加支撑点并不能使镜面最大形变得到显著改善同时会引起镜面波纹起伏增加。
抛光颗粒尺度均匀性对射流去除特性的影响
基于单喷嘴射流抛光去除机理,研究了抛光颗粒尺度分布理想均匀时,颗粒直径和抛光液质量分数变化对冲击去除分布的影响。在此基础上,考虑到实际加工过程中。抛光粉颗粒不可避免地存在分布不均匀的情况,在非理想不均匀条件下,提出了一种分析颗粒尺度的材料去除特性模型,重点研究了不同颗粒尺度分布范围对材料去除特性的影响。结果表明:在理想状态下,冲击去除随着抛光颗粒直径的增大而减小,随着抛光液质量分数的增大而增大。当颗粒直径随机分布时,材料去除量将出现明显的波动,抛光液质量分数的增大使去除量波动也增加,去除量波动的大小与抛光粉颗粒的平均直径直接相关,且与理想均匀状态下的去除特性相比,颗粒分布不均匀性使得材料的去除量有所增大。
-
共1页/9条