碧波液压网 欢迎你,游客。 登录 注册

活塞喉口微细缺陷识别与分类研究

作者: 杨威 皇攀凌 陈彬彬 周军 来源:机械设计与制造 日期: 2025-01-26 人气:122
活塞喉口微细缺陷识别与分类研究
活塞作为发动机内最重要的零件之一,工作过程中将承受巨大的爆发力。当活塞喉口存在微细缺陷时,爆发力将会导致缺陷开裂从而产生严重的安全隐患,因此对于活塞喉口微细缺陷检测的研究具有重要意义。采集三种不同缺陷类型的活塞涡流信号,进行降噪后提取其时域、频域及时频域内多重特征。对比分析了基于主成分分析(Principal Component Analysis,PCA)和线性判别分析(Linear Discriminant Analysis,LDA)降维的活塞喉口微细缺陷检测与识别方法,并对降维结果分别进行线性判别分类和高斯朴素贝叶斯分类(Gaussian Naive Bayes,GaussianNB),对比缺陷识别的准确率与模型训练时间,从而得出性能最好的缺陷识别模型。实验结果证明LDA-GaussianNB模型可高效判别活塞喉口微细缺陷类型。

基于MFE与改进层次原型的轴承故障诊断方法

作者: 范瑞天 张纪平 杨永升 杜文华 王俊元 来源:机械设计与制造工程 日期: 2025-01-23 人气:122
基于MFE与改进层次原型的轴承故障诊断方法
针对滚动轴承故障特征难以提取和故障特征分类困难的问题,提出了一种基于多尺度模糊熵(MFE)与改进层次原型分类器(IHP)的故障诊断方法。首先,利用多尺度模糊熵从滚动轴承不同状态下的振动信号中提取20种故障特征。其次,引入线性判别分析(LDA)对Hierarchical Prototype进行改进,从而提高故障分类精度。最后,结合多尺度模糊熵与改进层次原型分类器对故障特征进行分类。实验证明,提出的MFE与IHP能有效提取滚动轴承的故障特征,并实现高精度分类。相比于其他故障识别分类器,所提方法有更高的识别精度,分类精度达到了99.29%。

基于RLMD和Kmeans++的轴承故障诊断方法

作者: 颜少廷 周玉国 任艳波 刘师良 颜世铛 来源:机械传动 日期: 2025-01-14 人气:83
基于RLMD和Kmeans++的轴承故障诊断方法
为了提升轴承故障诊断性能,提出了一种基于鲁棒局部均值分解(RLMD)和Kmeans++的轴承故障诊断方法。利用RLMD方法对轴承振动信号进行分解,得到乘积函数(PF),根据PF分量与原始振动信号的相关程度选择敏感PF分量,叠加敏感PF分量构成重构信号;通过计算原始振动信号和重构信号的时域、频域统计特征形成轴承故障特征集;利用线性判别分析(LDA)提取轴承故障的Fisher特征;通过Kmeans++聚类的方法对故障特征进行聚类,得到各工况轴承的聚类中心;通过计算测试样本与聚类中心之间的汉明贴近度来实现轴承故障诊断。利用含有不同信噪比的仿真轴承故障数据和Paderborn大学轴承数据中心的轴承故障数据评价所提出方法的有效性。结果表明,该方法即使在样本数较少的情况下也能够准确地识别出不同类别和级别的轴承故障。

基于约束线性判别分析的非监督高光谱影像分类方法

作者: 张凯 赵辽英 厉小润 来源:机电工程 日期: 2023-01-28 人气:4
基于约束线性判别分析的非监督高光谱影像分类方法
针对高光谱影像非监督分类问题,从特征提取的角度提出了一种用于高光谱混合像元分类的非监督约束线性判别分析算法(UCLDA)。该算法首先利用顶点成分分析(VCA)提取端元,然后用光谱角匹配方法(SAM)构造训练样本并基于约束线性判别分析(CLDA)进行特征提取,最后用最小距离法分类。整个算法实现了非监督分类。对模拟的高光谱数据和真实的遥感影像进行了仿真研究,研究结果表明.UCLDA略优于最小二乘光谱混合分析技术.但明显好干经典的井.谱角匹配分娄.
    共1页/4条