基于ANF的柱塞泵用电机转速脉动抑制方法
针对具有周期性变化特性的柱塞泵类负载造成永磁同步电机产生周期性转速脉动的问题,研究了一种基于自适应陷波滤波器的柱塞泵用PMSM周期性转速脉动抑制方法。分析了柱塞泵类负载的负载特性,在转速电流双闭环矢量控制系统基础上,分析了传统离散傅里叶变换法提取电流谐波的原理和缺点,提出利用电机转子位置构造自适应陷波滤波器来提取电机q轴电流中谐波分量,作为补偿电流叠加在q轴电流指令上,抑制柱塞泵类负载带来的转速脉动。仿真和实验结果表明,该转速脉动抑制方法能够有效降低柱塞泵类负载下电机稳态转速脉动,额定转速下的脉动可降低到原来的18%,提高了电机运行的平稳性,降低了整个液压系统的运行噪声。
采用LVDT位移传感器的高温阀位置伺服系统设计
为解决传统数字阀驱动复杂、控制器体积大、可靠性差等问题,设计了一种高温阀位置伺服系统控制器。该控制驱动器采用LVDT位移传感器进行高温阀阀芯位移的检测,通过控制前置级偏心拨杆阀,实现对主功率级高温阀的位置控制。介绍了伺服系统的总体方案、硬件设计、Simulink仿真模型,控制技术等,并对系统样机进行了实验。证明了该伺服控制器体积小、动态高、分辨率高,实现了对高温阀流量输出的精确控制。
一种偏心拨杆数字阀用位置伺服控制驱动器的设计
为解决传统数字阀驱动复杂、可靠性低、控制驱动器体积大等问题,设计了一种偏心拨杆数字阀用位置控制驱动器。该控制驱动器以STM32F103RET6作为控制核心,以LMD18200智能模块作为驱动单元,采用模拟霍尔位置传感器检测电机转角位置,通过控制有限转角电机,进而实现对偏心拨杆数字伺服阀的驱动。介绍了伺服系统的总体方案、系统硬件、软件设计及控制算法,并对系统样机进行了试验。试验证明,该伺服控制驱动器集成度高,体积小,能够实现高精度、高动态的位置伺服控制。
盆形极靴形状对比例电磁铁静态特性影响的仿真与试验研究
比例电磁铁的静态特性与盆形极靴的形状息息相关,以梯形宽度和极靴角作为研究对象,利用电磁仿真软件建立比例电磁铁的仿真模型,仿真分析得到盆形极靴的形状参数对比例电磁铁位移-电磁力特性和电流-电磁力特性等静态性能的影响,对优化比例电磁铁结构设计起到指导作用,最后通过试验验证了仿真的正确性并给出了结论。
偏导射流伺服阀建模及动态特性研究
为研究偏导射流液压放大器内部结构与伺服阀动态性能的内在联系,分别建立力矩马达、偏导射流液压放大器、功率级液压放大器的解析数学模型。分析接收口的复杂流动情况,提出一种简化的前置级液动力计算方法。构造偏导射流伺服阀完整模型,揭示射流口宽度、射流盘厚度及喷射口宽度对伺服阀动态特性的作用机理。针对整阀动态特性的漂移问题,探究了偏导射流前置级流量增益的非线性变化规律及其对动态特性的影响规律。仿真和试验结果表明,该数学模型能够有效地复现实际伺服阀动态特性,可为偏导射流伺服阀的设计和优化提供理论基础。
偏导射流液压放大器流量增益非线性研究
偏导射流液压放大器是偏导射流伺服阀中的核心组件,其性能一定程度上决定了整阀性能,流量增益是偏导射流液压放大器的一项关键特性。通过定性分析及理论推导相结合的方式,得出了偏导射流液压放大器流量增益非线性模型,该非线性与偏导板喷射口宽度及分流劈尖宽度有关。当偏导板位移较小时,流量增益为恒值;当偏导板位移达到喷射口宽度及分流劈尖宽度之和的一半时,偏导射流液压放大器的流量特性达到饱和。最后,通过对实物进行测试验证了模型的正确性。
一种采用主备式驱动机构的双余度数字伺服阀性能研究
余度数字阀具有可靠性高的优点, 是未来数字阀的一个重要发展方向.数字阀可靠性的薄弱环节一般为其驱动机构, 针对该情况, 该研究提出了一种采用主备式驱动机构的双余度数字阀方案, 介绍了其组成和原理, 对其动静态性能进行了理论研究, 并进行了仿真分析和相应的试验验证, 最终给出了结论.
数字伺服阀卡滞问题研究
数字伺服阀是未来伺服阀发展的一个重要方向。针对一种数字伺服阀的卡滞问题进行了深入的理论及仿真分析,并进行了大量的试验验证,最终揭示了数字伺服阀卡滞问题的根源,并有针对性的给出了设计建议。
滑阀柔性直接驱动技术研究
数字伺服阀是未来伺服阀发展的一个重要方向。数字伺服阀大多采用驱动元件直接驱动阀芯滑动的方式,直驱方式的不同很大程度上决定了阀芯滑动的灵活性,进而影响整阀的分辨率。对滑阀柔性直接驱动技术进行了深入的理论及仿真分析,并进行了相应的试验验证,最终给出了结论。
一种数字伺服阀驱动机构的性能研究
数字伺服阀是未来伺服阀发展的一个重要方向其大多采用驱动机构直接驱动阀芯工作的方式因此性能优良的驱动机构能很大程度上提升整阀的性能。给出了一种基于永磁同步电机和丝杠的新型数字伺服阀驱动机构并对其进行了深入的理论、仿真分析和相应的模拟带载试验其性能可满足大流量数字伺服阀的性能需求。