某型装备溢流阀状态监测及故障特征研究
以某型装备溢流阀为研究对象,分析了常见的故障及其表现特征,选取了适于监测溢流阀故障的特征信号,设计了溢流阀的状态监测系统,并用此系统采集和分析了溢流阀发生故障时的数据,得到了不同故障发生时的故障信号特征。
基于局部特征尺度分解谱熵和VPMCD的液压泵退化状态识别
针对液压泵故障信号的非平稳特性以及其退化状态难以识别的问题,结合局部特征尺度分解与信息熵理论,提出了局部特征尺度分解谱熵的退化特征提取方法,并将基于变量预测模型的模式识别(Vanable Predictive Model based Class Discriminate,VPMCD)方法引人到液压泵的退化状态识别.对不同程度故障的液压泵振动信号进行局部特征尺度分解,从得到的内禀尺度分量中提取振动信号的复杂度和随机性度量指标能谱熵、奇异谱熵和包络谱熵,以其作为液压泵的退化特征向量,通过建立VPMCD退化状态识别模型实现液压泵的退化状态识别.仿真信号分析结果验证了所提出的局部特征尺度分解谱熵具有较好的表征液压泵故障退化状态的能力.通过对实测液压泵松靴和滑靴磨损两种故障模式下的退化状态振动信号进行分析验证了提出方法的有效性.
基于FastPW和CNC降噪的液压泵振动信号预处理方法
针对离散余弦变换(Discrete Cosine Transform,DCT)阈值降噪法存在的问题,提出一种自适应的余弦相邻系数(Cosine Neighboring Coefficients,CNC)降噪法,仿真信号分析结果表明CNC降噪法具有更好的降噪性能。将该方法与振动信号快速预白化(Fast Pre-Whitening,FastPW)技术相结合形成了一种液压泵振动信号预处理新方法:首先采用FastPW算法对液压泵振动信号预白化,去除信号中的谐波分量,得到仅包含冲击分量和白噪声的预白化信号;然后采用CNC降噪法对预白化信号进行自适应降噪。实测信号分析结果表明提出的方法能够很好地消除液压泵振动信号中的谐波分量和噪声成分,且能有效保留信号中的故障分量。
S变换相对谱熵及其在液压泵退化状态识别中的应用
为更好地表征液压泵的退化状态,对液压泵退化特征提取方法和退化状态识别方法进行研究。基于S变换分析非平稳信号的优异能力以及相对熵较好表征振动信号概率分布差异的特性,提出S变换相对谱熵的液压泵退化特征提取方法,对液压泵仿真信号分析结果验证了所提出的S变换相对能谱熵和S变换相对奇异谱熵作为退化特征的有效性和可行性。将两个特征指标组成退化特征向量,对滑靴磨损和松靴故障模式下不同故障程度的液压泵振动信号进行分析,进一步验证所提出的特征指标作为液压泵退化特征的有效性。将加权灰关联法用于液压泵退化状态识别,建立了液压泵的标准退化模式矩阵,对两种故障模式下液压泵待检测样本的退化特征向量和标准模式矩阵做加权灰关联分析,根据灰关联度的大小判定液压泵的退化状态,结果验证了所提出方法的良好性能。
基于改进MF-DFA和SSM-FCM的液压泵退化状态识别方法
针对液压泵振动信号通常具有非线性强和信噪比低的特点,提出了一种基于改进多重分形去趋势波动分析(MF-DFA)和半监督马氏距离模糊C均值(SSM-FCM)的液压泵退化状态识别方法。该方法首先引入滑动窗口技术改进传统MF-DFA方法在时间序列数据分割过程中存在的不足,提高MF-DFA方法的计算精度;然后利用改进MF-DFA方法计算液压泵多重分形谱参数,并分析了不同分形谱参数对液压泵退化状态的反映能力,选取奇异指数α_0和广义Hurst指数波动均值Δh(q)作为退化特征量;最后利用半监督马氏距离模糊C均值方法实现了液压泵退化状态识别,并以液压泵实测数据为例验证本文所提方法的有效性。
基于MMSE和ABCSVM的液压泵故障模式识别
为了更好地实现液压泵的故障模式识别,对液压泵故障特征提取方法和模式识别方法进行研究。针对多尺度熵算法存在的在尺度因子较大时时间序列较短而导致各尺度样本熵表征液压泵故障状态性能较差的问题,提出了改进的多尺度熵算法,通过对液压泵实测信号分析验证了所提出的改进多尺度熵的良好性能。针对液压泵故障状态与故障特征之间的非线性关系,采用支持向量机算法建立液压泵的故障模式识别模型,并提出采用人工蜂群优化算法对支持向量机模型参数进行优化。基于改进多尺度熵和蜂群优化参数的支持向量机实现液压泵故障模式识别,通过对比分析验证了所提出的液压泵故障模式识别方法的良好性能。
一种基于WMUWD的液压泵振动信号预处理方法
针对轴向柱塞液压泵故障引起的振动信号非线性强、故障信息湮灭在噪声干扰的问题,提出一种基于加权形态非抽样小波分解(WMUWD)的振动信号预处理方法。首先,在形态非抽样小波分解的一般框架下,提出WMUWD方法,利用特征能量因子表征形态非抽样各分解层近似信号对故障特征的贡献量,并以此为依据进行加权融合,以提高有用信息比重,便于特征提取;在此基础上,对WMUWD方法的初始参数设置进行了分析,给出了一套比较系统的优选组合方法;最后,利用仿真信号以及液压泵实测振动信号验证了该方法的有效性。
基于多目标参数的液压设备恒定应力加速寿命试验设计
在液压设备恒定应力加速寿命试验中,针对应力的加载方式引起的热冲击和单目标参数带来的分析精度问题,设计了基于多目标参数的液压设备恒定应力加速寿命试验。首先,利用Burr Ⅻ型分布建立恒定应力加速寿命试验的数学模型,并以试验产品分位寿命的渐近方差加权和最小为目标,计算出试验最优的低应力水平以及产品在低应力水平和高应力水平上的最佳分配比例;其次,计算出模型参数的置信区间并对模型参数进行敏感性分析;最后,以莱液压产品为实例进行分析。结果表明:该试验有助于提高液压产品可靠性分析的精度。
基于集总经验模式分解和支持向量机的液压泵故障预测研究
液压泵的性能直接影响整个液压系统的正常工作,为此需要对其进行状态监测和故障预测。采集液压泵的振动信号,运用集总经验模式分解(EEMD)和平滑能量算子解调相结合的方法进行包络解调;采取小波包分析方法得到了故障特征向量;在研究支持向量机回归估计基本原理的基础上,建立了小波包分解和支持向量机相结合的预测模型。采用液压泵历史数据对模型进行了验证,结果表明,基于支持向量机的预测模型和故障映射模型可以有效地对液压泵进行故障预测。
基于SIE和SVR的液压泵故障定量诊断
为更好地实现液压泵故障定量诊断,对故障定量诊断中的退化特征提取和故障程度诊断方法进行研究。针对排列熵算法的不足,提出空间信息熵(spatial information entropy,简称SIE)的概念,分析了空间信息熵3个参数(时间序列的分区数s、相空间重构的嵌入维数m和延迟时间τ)变化对其性能带来的影响,为其选取提供了依据。仿真分析结果也验证了其作为液压泵退化特征的有效性和优越性。基于空间信息熵算法提取液压泵故障退化特征集,针对退化特征与故障程度之间存在的非线性关系,提出采用果蝇优化算法优化参数的支持向量回归机实现液压泵的故障定量诊断。对实测液压泵振动信号分析结果表明,空间信息熵在表征液压泵故障程度方面具有更好的性能。将果蝇算法优化参数的支持向量回归机用于液压泵的故障定量诊断得到了理想的定量诊断效果,并通过对...