双作用压电泵绝缘压电振子
提出了对压电泵巾的动力元件压电振子进行特殊绝缘处理的方法,使压电振子在两个方向弯曲变形时都有输出工作能力,形成双面作用的绝缘压电振子。阐述了由一个绝缘压电振子形成两个工作腔体的双作用压电泵结构。根据小挠度弹性弯曲理论导出了绝缘网形复合压电振予的弹性曲面微分方程,阐述了绝缘处理方案和过程,并对其绝缘特性进行了分析。对绝缘压电振子进行了实验测试,实验结果表明:双作用绝缘压电振了不仅具有绝缘特性,而且具有良好的韧性和强度,其击穿电压比未经绝缘处理的压电振子的击穿电压提高了20~30V。
蠕动式精密直线驱动器
基于蠕动原理和误差补偿技术,用压电陶瓷作为动力源设计了一种精密直线驱动器.建立了驱动器的动力学模型,并制作了样机.试验表明:在计算机闭环控制下,该驱动器能够可靠地实现双向运动.在行程为1 mm时,定位精度达到±0.01 μm;有效驱动力为20 N.
基于圆形压电振子的骨传导听觉装置
应用周边固支式圆形压电振子作为驱动元件,将音讯信号转换为振动信号,再利用骨传导方式使人感知音讯信号,在此基础上构建了圆形双晶片压电式骨传导听觉装置。对圆形压电振子进行了建模,利用有限元仿真分析,提出了压电振子支撑方式的优化方案。对设计的压电式骨传导听觉装置进行了实验测试,得到了骨传导装置结构参数对其性能影响的关系曲线。实验研究表明:压电式骨传导听觉装置的基本性能指标能够满足骨传导听觉装置的要求。
压电叠堆式惯性移动的机构设计与试验
提出通过改变压电移动机构和接触面之间正压力的方法改变机构不同方向的摩擦力,使机构沿规定方向运动。介绍了压电叠堆式惯性移动机构的工作机理,设计并研制了试验装置,并进行了试验研究。结果表明,机构在方波这种对称波形信号的激励下能够实现可控的正向直线运动。
压电双晶片型二维惯性冲击式精密驱动器
研制了一种以自由端带有集中质量的悬臂式压电双晶片为驱动单元、具有移动和旋转二自由度的惯性冲击式精密驱动器。对压电双晶片的动态特性进行了有限元法分析和实验测试,提出了定频调压的控制方法,并对该精密驱动器进行了移动和旋转性能测试。测试结果表明:该驱动器具有结构简单、行程大、驱动力强、分辨率高等特点,而且其成本低于传统惯性冲击式驱动器的百分之一。
动摩擦力矩测试新方法
动摩擦力矩测试新方法吉林工业大学曾平,常颖,孙树廷天津理工学院白元章一、引言旋转机械的摩擦力矩测试,是了解机械设备的性能,提高机械设备的设计水平的重要实验环节之一。关于静摩擦力矩的测试,一般采用杠杆──重物测量力矩的方法,操作简便,精度可根据设计要求...
腔高对压电液压驱动器性能的影响
为满足大行程、高输出力精密驱动及振动控制的需求,设计了压电叠堆隔膜泵驱动的压电液压驱动器并进行了试验.利用实际液体可压缩的特性,建立了压电液压驱动器理论分析模型,分析了液体体积模量以及压电泵腔高对其输出性能的影响规律.结果表明,其他结构参数确定时压电液压驱动器输出能力随液体体积模量的减小而降低,并存在最佳腔高使其输出能力最大.利用尺寸为4 mm×4 mm×80 mm的压电叠堆制作了泵腔直径30 mm、高度分别为0.3 mm、0.6 mm、0.8 mm、1.0 mm、1.3 mm的压电泵,用于驱动尺寸为20×100 mm3的液压缸.以水为工作介质,在电压150 V、频率60~400 Hz条件下测试了驱动器的输出速度及驱动力.工作频率为300 Hz时,腔高0.6 mm(最佳值)时的输出速度为13.2 mm/s,分别为腔高0.3 mm和1.3 mm时的1.1倍和2.28倍;工作频率为80Hz时,腔高0.3 mm(最小腔高)时的驱动力为105 N,是腔高1.3 m...
杠杆放大型直动式压电伺服阀动态特性
提出一种基于杠杆放大原理的直动式压电伺服阀。该阀采用大行程的压电叠堆作为驱动元件,经杠杆放大后的位移直接驱动功率级滑阀。采用解析法建立了阀芯运动机构的动力学模型,并对其进行了仿真分析。试制了杠杆放大型直动式压电伺服阀样机,并对样机的动态特性进行了试验测试。结果表明,该阀正向阶跃响应时间为0.54 ms,负向阶跃响应时间为1.08 ms,频宽约为1 kHz。新型伺服阀可以应用于振动试验台、疲劳试验台及需要快速反应的流体控制系统中,可提高系统的快速响应特性。
压电驱动式高频电液伺服阀实验研究
为了提高电液伺服阀的频率响应特性,采用响应速度快、输出力大、刚性好的积层式压电驱动器作为伺服阀的前置级电-机械转换器.采用杠杆放大的方式对压电驱动器的输出位移进行放大,保证足够的流量输出;采用直接驱动阀芯的方式增强了抗污染能力以及动态响应特性;功率级滑阀采用内置方式,用单个压电叠堆实现了滑阀的双向控制.试制了压电伺服阀的样机,并对样机进行了静、动态测试.得出该阀的频宽大于1.2 kHz,流量为5.7 L/m in,抗污染能力达到ISO 4406 18/15.











