基于三容腔液压缸的装载机举升系统能效特性
为消除装载机阀控液压系统在举升和下降过程产生的节流和溢流损失,并回收举升过程中积累的重力势能,提出由三腔液压缸和闭式泵控组合的高能效液压驱动系统。首先,将现有非对称液压缸中的柱塞杆改为中空结构,设计中空腔室柱塞腔与有杆腔的面积相等,两腔室直接与液压泵进油口和出油口相连,构成闭式泵控回路,第三腔室直接与蓄能器相连,构成液气储能单元;然后,根据工作原理和理论分析初步确定系统基本元件的参数,构建所提出的系统的多学科联合仿真模型,通过动态特性的仿真分析,验证系统的可行性;最后,搭建高能效液压驱动系统试验样机验证仿真结果的准确性,并分析不同势能回收腔压力对系统能效和特性的影响。研究结果表明:采用闭式泵控液压系统,不仅完全消除了节流损失,还通过伺服电机驱动定排量液压泵,实现了动臂液压系统供需流量...
液电混合高能效直线驱动系统控制及仿真分析
现有电液控制系统为控制液压缸位置,采用比例阀或伺服阀,造成了非常大的节流损失。为改善能效,提出了一种采用电-机械执行器和液压缸的新型液-电混合驱动系统,电-机械执行器用于控制负载运行速度和位置,主要克服惯性力;液压缸主要克服外负载力。为了抑制二者之间的耦合影响,电-机械执行器采用位置闭环控制,并在转矩环补偿干扰力。控制阀主要起液压缸换向作用,节流损失很小,以设定的电-机械直线执行器输出力阈值为基础,通过调节泵压力(液压缸进油压力)或阀开口(液压缸回油压力)控制液压缸输出力。研究结果表明,所提系统具有与阀控缸系统相同高的控制精度,并可大幅减小节流损失。与阀控缸系统相比,液电混合驱动系统能效提升了43.1%。
闭式泵控液压机运行与能效特性
液压机的特点是滑块质量大,工进负载力大,其滑块空程下放造成了重力势能、动能等能量的浪费。为了回收利用这部分能量并且降低电机转矩,基于“伺服电机+定量泵”的闭式泵控方案,提出了带超级电容储能系统的双排量泵/马达闭式驱动液压机方案,并制定能量管理策略对能量进行回收与再利用。搭建了液压机试验台,试验结果表明,储能系统的能量回收效率为79.3%;进一步开展仿真研究,基于SimulationX多学科仿真软件,构建了液压机的多学科仿真模型,仿真结果表明,双排量泵能大幅度降低电机转矩,储能系统能够减少液压机整机6.9%的能耗。
电液伺服增压系统的压力冲击抑制方案及特性
传统伺服增压系统采用电磁换向阀控制增压缸双向运动,电磁换向阀阀芯位移阶跃变化,导致液压泵变量机构响应不及时而产生大的压力冲击,造成系统中部分元件的损坏并影响系统的正常工作。为此,提出一种液压泵压力主动调控与增压缸位置闭环控制的方法,在液压泵出口增设蓄能器,并使液压泵压力根据增压缸水腔压力实时变化,减小增压缸换向过程压力冲击。建立了所提伺服增压系统的仿真模型,分析伺服增压系统运行特性和所提方案减小压力冲击的效果。结果表明,与传统伺服增压系统相比,采用提出的解决方案,液压泵出口压力冲击由21 MPa减小为14 MPa;增压缸在系统启动过程中的油腔压力冲击由32 MPa降低为7.1 MPa,降低幅度为77.8%;高压运行过程中,油腔压力冲击降低4.5 MPa。同时,所提方案具有良好的节能效果,一个增压周期内,与传统增压系统相比,能耗降低...
旋挖钻机卷扬装置电液混合驱动系统特性
现有旋挖钻机卷扬系统是由阀控液压马达驱动。作业过程中,该系统存在非常大的节流损失;而且工作装置下放过程中,大量重力势能经控制阀节流作用转化为热能耗散掉,造成整机能效较低。为此,提出一种卷扬装置电液混合驱动系统,电动机作为主驱动,控制工作装置运动,降低节流损失;液压泵/马达与蓄能器等组合,构成能量回收单元,回收利用重力势能,辅助电动机驱动卷扬装置。分析了液压卷扬、电动卷扬与电液混合驱动卷扬系统的工作原理和运行特性,建立
流量反馈型电液比例阀的模糊PID控制特性
流量反馈型电液比例阀是一种较为复杂的高阶非线性系统,传统PID对其控制效果不佳。为提高该阀的控制性能,提出一套基于模糊控制理论的参数自整定PID算法。分析电液比例阀工作原理,设计一种两输入三输出的模糊自整定PID控制器;采用Simulink和SimulationX软件,分别建立模糊PID模型和电液比例阀模型,对电液比例阀的控制特性进行仿真分析。结果表明:采用所设计的模糊PID控制器,可有效改善新型电液比例流量方向阀稳定性和动态性能。
电液比例阀主阀配合间隙泄漏仿真分析
液压元件的使用寿命以及使用性能受多因素影响,其中一个重要影响因素就是环形缝隙。现以应用Valvistor阀控制原理的电液比例方向阀为研究对象,从其结构和工作原理出发,分析几种可能的泄漏途径,利用环形间隙流量公式、圆盘间隙流量公式以及阀口流量公式,建立整阀的数学模型。在此基础上,在SimulationX中建立比例方向阀的多学科仿真模型,分别对影响间隙流量的因素:间隙宽度、间隙长度和间隙端压差对比例阀性能的影响做了仿真分析,仿真结果与理论结
电比例斜盘式恒压柱塞泵的联合仿真与特性研究
为了研究电比例斜盘式恒压柱塞泵的动静态特性,在分析其工作原理、运动特性和流量特性的基础上,利用SimulationX软件搭建恒压泵的机械、液压联合仿真模型进行研究,分析了变量缸大小腔直径比、变量缸弹簧刚度和主控压力阀的阀芯直径对恒压泵动态特性的影响。研究结果表明:电比例斜盘式恒压柱塞泵泵具有良好的动静态特性;主控压力阀阀芯直径越大,压力稳态值越接近设定压力值;弹簧刚度的增大和变量缸大小腔直径比值的减小都会提高恒压泵的动态响应速度,但超调量也会随之增大。
恒压变量斜轴泵联合仿真模型及特性分析
恒压斜轴式变量泵排量大,压力高,广泛应用于工程机械、冶金机械、矿山机械和船舶等的液压系统中。其基本原理是通过设定先导比例溢流阀压力,缸体摆角自动调节,使泵出口压力与先导溢流阀设定值相同。在理论分析的基础上,采用SmulationX软件,构建了变量泵液压与机械的联合仿真模型,对比例变量恒压柱塞泵静态及动态输出压力流量特性进行分析,研究变量弹簧对动态特性的影响。仿真结果表明:恒压变量泵压力和流量特性稳定,变量弹簧刚度越大,恒压泵响应越快。该研究可为高性能液压泵元件的设计提供指导。
新型高速开关转阀性能分析
最近,美国明尼苏达州立大学研究人员提出一种高速开关转阀,该高速开关转阀具有流量大、频率高、寿命长等优点,但该阀阀芯转速不稳定,尤其当小流量工况时,阀芯转速急剧下降,从而导致其不能正常工作。在其研究基础上提出一种改进方案,该方案主要由阀芯和阀套构成,阀芯旋转运动由步进电机驱动,改变阀套轴向位移调节PWM占空比。为了验证该方案的可行性,在多域仿真软件SimulationX3.5中搭建相应的仿真模型,继而对其压力、流量和效率等性能进行分析,计算结果表明改进后的高速开关转阀转速稳定,流量特性好,效率高。