参数自适应型蓄能器磁流变液工作腔的分析
针对一种参数可变液压蓄能器样机(其充气压力、充气体积、工作介质阻尼系数及进油口结构参数能够根据液压系统工况变化实时调整),采用磁流变液作为其主要工作介质之一,通过磁流变液工作腔实时调整样机的阻尼系数,以满足不同液压系统动态特性的要求.重点研究磁流变液工作腔的结构及其外加电磁线圈磁路,在此基础上建立该部分数学模型,并将其与参数可变蓄能器样机整体数学模型结合进行理论分析,最后通过实验研究验证结构设计及理论分析的正确性.
汽车起重机电液流量匹配系统非线性特性研究
针对汽车起重机变转速电液流量匹配系统液压泵流量非线性和非线性负载扰动问题,提出了一种基于先验数据的液压泵流量非线性映射模型。首先,搭建了电机、定量泵和液压缸的数学模型;其次,通过实验测得了液压泵压力、转速与容积效率的关系,拟合出了容积效率云图,构建了泵的流量非线性映射模型;最后,以变幅机构为分析对象,利用AMESim软件搭建了系统仿真模型,进行了液压泵的流量非线性和非线性负载扰动在流量补偿前后的对比仿真分析。研究结果表明:在液压泵流量非线性映射模型的补偿作用下,系统能够对电机转速进行补偿,使液压泵的输出流量不随负载压力的变化而变化,当负载出现25 kN、50 kN和75 kN阶跃波动时,最大流量波动幅值分别减小52.1%、47.9%和43.5%,验证了所提出的流量非线性模型的有效性,提升了变幅伸缩机构的控制精度和运动平稳性。
汽车起重机变转速电液流量匹配控制研究
针对汽车起重机阀前补偿负载敏感(LS)系统预设泵压力裕度带来的能耗问题,以及系统流量饱和时对变幅伸缩机构进行复合动作带来的操控性问题,提出了一种基于变转速的电液流量匹配控制系统和一种抗流量饱和控制算法。首先,分析了负载敏感(LS)系统的工作原理,并提出了一种应用于汽车起重机的变转速电液流量匹配控制系统;然后,分析了变转速电液流量匹配控制系统的工作特性和能耗特性,并设计出了一种抗流量饱和控制策略;最后,利用AMESim软件搭建了负载敏感(LS)系统和电液流量匹配系统的仿真模型,并对系统的节能和抗流量饱和特性分别进行了仿真分析。研究结果表明:相比于负载敏感(LS)系统,变转速电液流量匹配系统节能5%~7%,且在系统流量饱和时,变幅伸缩机构的流量可根据各联主阀的开度比例分配,提升了复合动作的协调性。
风力发电机组泵控液压系统变桨距控制研究
风能收集和转换主要的两种功率调节模式是风力机转速变化和桨距控制。从大型风力发电机组容量和变桨距控制的要求出发,对高性能变桨距控制技术展开研究,应用电液伺服泵控变桨距控制系统,针对变桨距控制中负载强扰动,系统控制鲁棒性差的问题,采用模糊PID控制策略,提高系统抗干扰的综合性能。通过Simulink建立模糊PID控制策略,因为负载处于强扰动工况,针对不同桨距角下,油缸所受载荷进行仿真分析,通过在Fluent中建立风机桨叶的流场模型,得出了不同
三向堆垛拣选叉车液压集成块仿真优化
在三向堆垛拣选叉车液压系统中,集成块加工直角交叉内部油道时常采用工艺孔,但工艺孔会使油液的外剪切应力发生改变,产生湍流或漩涡流动,增大压力损失及振动噪声。针对此问题,采用ANSYS软件对集成块流道的液流特性进行仿真,探索油液在集成块内的流动状态和压力损失机理,得到工艺孔直径、长度以及刀尖角腔的长度和方向结构属性对于流道压力损失的影响规律。通过对叉车举升系统液压集成块进行优化仿真,最终实现了平均压力损失降低13.61%的有益
液压型风力发电机组并网冲击抑制研究
以液压型风力发电机组为研究对象,针对其并网冲击问题,建立了风力发电机数学模型、定量泵-变量马达液压调速系统数学模型、同步发电机与励磁系统数学模型,推导了并网过程的冲击电流与冲击转矩数学模型。以数学模型为基础,提出了液压型风力发电机组并网冲击抑制方法,即通过发电机稳速控制、励磁电压控制和准同期监控相结合对机组并网冲击进行抑制。以30kV·A液压型风力发电机组实验台为仿真和实验基础,对机组并网冲击抑制展开研究。仿真和实验结果表明,所提出的并网冲击抑制方法对并网冲击转矩和冲击电流具有较好的控制效果,基本实现了机组柔性并网。
基于压力反馈的液压型风机低电压穿越控制方法
结合液压型风力发电机组低电压穿越的控制要求,以实现低电压穿越过程中的功率快速调整为控制目标,提出了一种基于压力控制的低电压穿越控制方法,即在原有低电压穿越控制环的基础上加入压力控制环。通过AMESim和MATLAB/Simulink软件搭建仿真平台进行联合仿真,并依托30kV·A液压型风力发电机组半物理仿真实验平台进行实验验证。结果表明,所提出的控制方法既可实现功率的快速调整,也能有效地抑制并网转速的瞬态冲击。
液压型风力发电机组的转速和转矩解耦控制
以液压型风力发电机组为研究对象,输出高质量电能为研究目标,针对机组存在的转速和转矩解耦问题展开研究。建立定量泵-变量马达液压传动系统数学模型。从液压传动系统出发,探究影响机组电能输出质量的关键因素,分析该多输入-多输出系统存在的耦合问题,并采用前馈解耦补偿控制方法解耦。分析变量马达和比例节流阀对液压系统输出转速与转矩的控制规律,得到基于高电能质量控制的转速和转矩解耦控制器。以30kVA液压型风力发电机组半物理仿真实验台为基础,针对提出的控制方法展开研究。仿真和实验结果表明:液压型风力发电机组输出的转速和转矩实现了解耦控制,有效地实现了液压传动系统的稳速控制和传输功率波动的平滑控制。研究结果为液压型风力发电机组高质量电能输出控制和电网友好性能提高奠定了基础。
某滑阀卡紧故障机理分析
针对高温工作状况下由滑阀几何形状引起的阀芯径向液压卡紧力进行了理论推导,进行了温度变化对阀芯与阀套配合间隙影响的温度场仿真分析,并对阀芯与阀套做了热应变分析,得到了滑阀顺锥与倒锥结构对阀芯受力的影响及油液、阀体温度不同情况下滑阀流道的温度场分布。通过对计算结果的分析,得出滑阀卡紧故障的原因,为滑阀设计提供了理论参考。
参数自适应型蓄能器磁流变液工作腔的分析
针对一种参数可变液压蓄能器样机(其充气压力、充气体积、工作介质阻尼系数及进油口结构参数能够根据液压系统工况变化实时调整),采用磁流变液作为其主要工作介质之一,通过磁流变液工作腔实时调整样机的阻尼系数,以满足不同液压系统动态特性的要求.重点研究磁流变液工作腔的结构及其外加电磁线圈磁路,在此基础上建立该部分数学模型,并将其与参数可变蓄能器样机整体数学模型结合进行理论分析,最后通过实验研究验证结构设计及理论分析的正确性.