solidThinkingInspire在卫星动量轮支架优化设计中的应用
本文借助solidThinking Inspire优化系统,对支架的传力路径进行优化分析,然后结合3D打印技术,采用高刚、高强的轻质栅格夹层壳结构,通过径向、轴向、周向的变厚度设计,达到结构承载比为4%的轻质高强结构,轻似鸿羽、固若磐石。
具有非线性连接的航天器非线性振动分析
大型航天器结构通常由一些简单子结构通过各类连接结构组装而成。通常这些连接结构具有不同程度的非线性问题。但是在有些情形下,却需要考虑这些非线性因素。提出了一种计算这类结构的频域响应方法。计算时只需要选取结构中的非线性自由度、激励自由度和需要分析的自由度,大大地减少了计算规模。这种方法适合于具有局部非线性的大型有限元模型的计算。以某卫星的有限元模型为基础,说明和验证了所提方法的可行性。
稀薄流航天器鼻锥迎风凹腔气动力和气动热性能研究
为探究稀薄流流域迎风凹腔的气动防热特性,采用直接模拟蒙特卡罗(DSMC)方法,对稀薄流流域中航天器鼻锥迎风凹腔气动力与气动热性能进行了研究。得到了鼻锥外壁面、凹腔侧壁面以及凹腔底面的热流密度分布情况,分析了不同凹腔深宽比对鼻锥冷却效率以及凹腔腔体内气体参数的影响。以深宽比为1的凹腔为基准,研究了凹腔唇口钝化半径对航天器气动热与气动力的影响。数值结果表明,稀薄流流域中迎风凹腔能够使鼻锥外壁面的热流密度下降7%左右;当凹腔深宽比达到1之后,凹腔侧壁面热流变化趋于一致,热流密度最低点的轴向位置不随深宽比改变,且凹腔底部热流很小,仅为L/D=0.5算例的28.66%;凹腔近底部气体均由稀薄流转化为连续流,凹腔内气体压力不断振荡;唇口钝化没有明显优势,虽然可以降低鼻锥峰值热流,但是会带来严重的气动力性能下降。
UKF参数估计在航天器气动辅助变轨问题中的应用
为快速精确地求解气动辅助变轨问题,提出一种基于无损卡尔曼滤波(UKF)参数估计的数值求解方法。首先,针对气动辅助变轨问题,利用极大值原理将其转化为对应的两点边值问题;然后,以协态变量的初值作为估计参数,以末端条件为期望观测值,将该两点边值问题转化为参数估计问题,并应用UKF滤波算法求解。该算法基于估计理论,避免了计算传统数值方法所需要的梯度矩阵,同时克服了猜测协态变量初值的困难,降低了求解气动辅助变轨问题的难度。数值仿真表明,该算法结构简单,求解效率高,具有良好的鲁棒性。
基于改进差分进化算法的密封舱结构优化设计
针对差分进化算法“早熟”问题,提出一种自适应变异率的双策略差分进化(AD-DE)算法。在迭代前期取较小变异率,并采用全局变异策略,快速锁定较优开采区间;在迭代后期取较大变异率,同时采用改进的局部变异策略,提高算法局部开采能力及加快收敛速度。将该算法应用于8个测试函数的优化中,结果表明:AD-DE算法与其它4种差分算法相比具有更好的全局寻优能力,并在某型密封舱结构优化中应用了该算法,有效地减轻了密封舱的结构质量,得到了较好的结构参数。
航天用管阀特高压密封技术简析
密封是保证航天器发射、运行可靠性及寿命的关键环节之一,随着月球及深空探测技术的发展,迫切需要解决在极高真空环境下设备的密封技术。本文介绍了航天飞行器中针对流体泄漏问题使用的管阀特高压密封技术的密封原理,针对现有管阀特高压密封关键技术在使用过程中存在的问题进行讨论,力求为航天管阀特高压密封技术的发展提供新思路、新方法。
航天器阀体密封结构加工及其质量分析
在各类阀门产品中,关键的零件之一是阀体,受到气密性特性的影响,阀体的尺寸精度很高,密封结构复杂、制作难度大、检测难度高、对光洁度的要求也很高,无法大批量的生产,也不能满足快速交付的要求。但阀体密封结构在航天器中是不容忽视的,本文以此讨论它的加工工艺、对相关的检测工艺进行研究,针对阀体密封结构加工质量不高、检测工艺遇到瓶颈等问题给出建议,以此保证产品的稳定、提升产品研发能力和研制效率。
航天器杆件死点特性结构锁设计与分析
针对天地往返航天器舱门需要重复开启与关闭的实际需求及传统火工分离装置只能单次解锁且伴随大冲击与振动的缺点,提出一种曲柄-摇杆四杆舱门重复锁紧机构。该机构基于平面四杆机构的死点区域来实现对舱门的可靠锁定,具有承载能力大、锁紧及解锁过程冲击微小、结构简单、重量轻及性能可靠等优点。为了更好地利用该机构的死点特性完成舱门的可靠锁紧,对机构的死点特性进行建模分析,给出使机构自锁的死点区域。对锁紧机构进行参数化建模,建立机构的参数化优化目标函数,利用MATLAB对进行机构优化设计并得到最优结构参数。仿真结果表明所提的锁紧机构可将舱门可靠地锁紧且经过优化后的锁紧机构所需的驱动力矩显著降低,具有较高的驱动效率。
航天器用超低黏度齿轮泵轻量化设计
为追求航天器用超低黏度介质齿轮泵较好的容积率和较低的发射成本,该文在创建容积率和新重合度公式的基础上,采用最优化设计方法,通过泵的单位排量体积或单位排量质量最小化,实现了90%的最小容积率和质量最轻化,分析了结构参数对优化结果的影响。结果表明:采用齿顶重合度优化设计后的根切重合度为–0.3429,不能保证连续传动要求;压力角、轴半径、齿条刀具齿顶圆角半径和过渡区起始角对优化结果,分别有6.07%、7.8%、2.9%和6.4%的影响,总体上影响不大;径向、轴向间隙的影响很大,并具有0.04、0.07 mm的影响转折点,该转折点为径向、轴向间隙的取值上限提供了依据。初次针对航天用齿轮泵的优化设计尝试,阐明了超低黏度介质同样适用于齿轮泵。该研究可为提高其他行业用超低黏度液压泵的研发提供参考。
航天器用超低黏度齿轮泵关键参数研究
为提高航天器用超低黏度齿轮泵的容积率和减轻泵的质量,基于泵周向和径向的两类主要泄漏,给出容积率的计算公式;以泵体积最小和容积率最大构建出双目标优化模型;针对只考虑内泄漏最小、综合考虑体积和内泄漏最小、只考虑泵体积最小的3种优化方案,分别进行优化计算并对相关参数的影响进行分析。结果表明,为适应介质的超低黏度,泵齿轮副的齿顶圆直径以及齿顶厚度应尽可能大,轴孔直径尽可能小;轴向间隙对泵容积率影响极大,为控制内泄漏之关键;过渡区采用无减少径向力措施的全齿密封,为提高容积率之最佳选择;较大的进油口和较小的出油口直径,利于提高泵容积率及避免因自吸力不足而造成泵的气穴现象。