软制动能量再生助力及其散热管理系统
为提高矿用宽体车动力性能和液压系统温度管理水平,优化了液压系统设计。优化后的液压系统安装在某矿用宽体车上,与常规设计手段下为提高整车动力性能搭载更大流量发动机的同型号车型在矿区完成了满载驳运对比试验。同时利用AMESim和AVL Cruise对液压系统建立了物理模型,在经典工况下仿真了该系统各模块的动态特性以及整车的动力性能。仿真和试验结果均表明:该系统在重载下坡运输过程中可实现软制动,能量再生模块可提高整车动力性指标,与选用大流量发动机的同型号整车相近,但综合油耗降低约17%;能量再生模块能有效吸收轮边冲击以及液压系统模块切换瞬间压力冲击;液压系统中的热管理模块可实现矿用宽体车在-5~45℃的环境温度下作业,使系统热平衡温度保持在70±5℃,在极寒作业过程中使用箱体辅助加热作业提高了驳运效率,同时使液压系统...
基于协同进化多目标遗传算法的复式液压摆动缸结构设计
针对舰船操舵过程中舵叶与水动力之间存在强力位耦合的问题,本文设计出一种新型复式液压摆动缸转舵机构,该机构由内外两层转子组成,内层转子控制舵叶转角,外层转子进行力矩解耦。为减小复式液压摆动缸的质量和体积,本文提出一种基于协同进化的多目标遗传算法,算法包含两类种群,一类用于进化决策解,并评价罚因子,另一类用于调整罚因子,并指导第一类种群进化,两类种群通过信息交换,来指导自身的搜索,从而使整个系统协同进化,以此求解复式液压摆动缸各几何参数的数值,直至获得满意解。最后,将该算法得到的参数数据,在三维软件中完成建模,并利用有限元软件进行应力应变分析。结果表明,相较于传统遗传算法,协同进化多目标遗传算法得到的复式液压摆动缸的质量减少了约25.5%,其得到的几何参数数据更为合理。
基于流量规划的液压悬架负负载调速控制
针对重型运输车液压悬架负负载下降速度不均匀、不稳定问题,提出一种基于流量规划的液压悬架负负载调速方案。首先根据悬架倾角传感器和手柄指令速度信号计算平衡阀理论输出流量,而后依据预先建立的平衡阀流量映射关系,采用线上查表和插值方法求值并通过比例溢流阀输出平衡阀所需控制压力,使其输出流量实时跟随理论流量,从而控制悬架下降速度实时跟随手柄指令信号。建立了控制方案的稳态数学控制模型,并在某型号运梁车上进行试验研究,研
阀控摆动式马达电液伺服加载系统的分析和实验研究
对阀控摆动式马达电液伺服加载系统进行研究建立了阀控摆动式马达主动式电液伺服加载系统的数学模型从结构和控制策略上对主要技术问题进行了探讨并进行了仿真分析和实验其仿真分析和实验结果基本一致表明本文建立的模型基本反映了阀控摆动式马达系统的实际特性所采取的复合控制策略能有效地提高系统的双十指标适于阀控马达力矩伺服加载系统的实时控制.
阀控非对称缸被动加载系统数学模型的建立
根据非对称液压缸的特性,首先定义了负载流量、负载压力及液压缸活塞的初始位置等一些参数。通过对阀控非对称缸被动加载系统中各个部分的分析建模,得到了整个系统的数学模型,为阀控非对称缸被动加载系统的研究奠定了基础。
三类伺服阀控制电液伺服加载系统的分析
以三类伺服阀控制马达的电液伺服加载系统为对象,分别建立了三类阀控制马达伺服加载系统的数学模型并进行了频率特性分析,通过对系统进行的动态仿真分析,得出了不同伺服阀对电液伺服加载系统的影响特性.
双阀控制电液被动施力系统的研究
以无扰动型电液施力伺服系统为目标模型,提出通过双电液伺服阀并联控制,以流量伺服阀作为完全流量补偿环节,使压力伺服阀工作在近似理想加载状态,实现使强位置扰动型电液施力伺服系统转变为完全无扰动型施力伺服系统。建立双阀控制模型、研究实现完全流量补偿的关键问题。理论分析和仿真证明该方案可行。
三类伺服阀控制电液负载模拟器的研究
建立了三类伺服阀(流量伺服阀、压力伺服阀、流量-压力伺服阀控制的电液负载模拟器数学模型,分析了它们加载和克服多余力矩的机理,并进行了仿真和实验研究,为设计和选用被动式电液伺服加载系统中的伺服阀,更好地克服多余力矩以提高系统性能提供了依据。
电液负载模拟器力矩控制伺服系统不确定性的分析研究
电液力矩伺服控制系统常用于电液负载模拟器(EHLS)以模拟航空动力铰链力矩,从而实现对目标的动态加载。由于系统存在不确定性和非线性因素,影响了系统的控制性能和稳定性。本文通过对电液负载模拟器系统模型的分析,详细论述了造成系统不确定性的原因。同时针对参数不确定性、模型不确定性及强外干扰产生的不确定性进行了仿真研究。仿真结果明确了各种不确定性对该类系统的影响程度,为采用相应的控制策略以消除多余力矩、提高系统性能提供了理论依据。
正开口阀在电液负载模拟器中的应用
从正开口阀的阀系数入手,分析其抑制电液负载模拟器多余力矩的机理。给出流量伺服阀、压力伺服阀、流量一压力伺服阀控制电液负载模拟器时阀正开口量的确定办法,并对和正开口阀有相似加载特性的加载马达两腔开连通孔进行了多余力矩抑制实验,为正开口阀用于电液负载模拟器提供了依据。