大口径球面镜支撑系统的优化设计
应用有限元法并借助于有限元分析软件,建立了轴对称平面单元和三维实体有限元模型.对1.2m球面反射镜的支撑系统进行了优化设计,优化确定了轴向支撑圈数、支撑半径和支撑点排列组合、侧向支撑位置.分析计算出主镜在水平放置轴向支撑作用和竖直放置侧支撑作用下重力引起的镜面面形误差RMS值分别为2.5nm和3.16nm,满足设计指标要求,预示了所设计的支撑系统方案的合理可行性.
四翼梁式次镜支撑结构的研究
为了优化大型望远镜次镜支撑结构的静力学和动力学性能,采用有限元分析的方法,计算了次镜支座最大变形与次镜支座的偏置角、四翼梁叶片厚度的关系;分析了四翼梁结构的频率与叶片偏置角的关系.分析证明当次镜支座偏置一定角度时能改善结构的静力学性能;当相对的两片叶片从直径线上错开一定的距离,对提高望远镜的谐振频率是十分有利的,在两者之间综合取舍确定了四翼梁的优化形式.分析结果表明,优化后的四翼梁结构的静力学和动力学性能均有提高.
钢带支撑轻量化椭圆镜的变形研究
应用有限元分析方法,借助于MSC.Nastran有限元分析软件,对钢带支撑下的大尺寸轻量化椭圆反射镜进行了受力、变形分析.用Excel绘出了钢带对椭圆镜边缘的正压力的分布曲线,得出了钢带对椭圆镜的正压力在最低点最大,随着支撑位置的上升而逐渐减小的分布规律.由镜面节点变形结果计算出椭圆镜在钢带支撑下的镜面面形误差RMS值为11.7nm,满足实际系统的面形准确度要求.
水平式光电望远镜目标定位误差的预测
为了确定水平式光电望远镜的各主要误差对观测精度的影响,提高望远镜的指向精度,对它的目标定位误差进行了分析。针对水平式望远镜的结构特点,通过分析从被测目标到望远镜相面产生目标定位误差的光、机、电等各种误差因素,建立了水平式望远镜目标定位测量方程。应用蒙特卡罗法进行误差仿真,预测出水平式望远镜的目标定位误差,并对各误差的敏感性进行了分析。选取敏感性高的误差项建立误差补偿模型,对实拍星体误差进行补偿实验,结果表明:补偿后经轴转角误差标准差从66.4″降低到3.3″,下降了95%;纬轴转角误差标准差从49.4″降低到5.6″,下降了89%。所用方法和模型能够对主要误差进行分析和预测,可为水平式光电望远镜的总体设计提供参考。
1m望远镜俯仰轴系精度检测误差的修正
针对1 m望远镜俯仰轴系检测精度未达到系统指标,而系统运转性能优异的问题,研究了系统可能存在的可消除误差项。通过对影响1 m望远镜俯仰轴系精度的主要因素—中间体(四通)的有限元分析和运算,得出了四通在不同俯仰角度的变形曲线,并与实际检测结果进行对比,找出两者的相同特征并进行了补偿。按此方法使得望远镜俯仰轴系晃动误差PV值从2.42″降到0.95″,RMS值从0.7″降到了0.3″,提高了系统精度模型的准确性。推导出了设计过程中的检测指标,为更大口径望远镜轴系的设计和检测提供了理论依据。
极轴式望远镜主镜支撑设计
极轴式望远镜主镜的面形精度受极轴和赤纬轴复合运动的影响,针对其复杂的运动方式,以Φ700 mm主镜为例,设计了一套满足其各种工况要求的轴向及径向支撑结构。运用有限元分析软件MSC.Patran/Nastran对其在水平和竖直放置的极限工况进行了分析,计算出主镜水平状态下的镜面变形误差PV值为19.33 nm,RMS值为4.47 nm;竖直状态下当极角θ为0°时,镜面变形误差PV值为16.19 nm,RMS值为1.26 nm,当极角θ为30°时,镜面变形误差PV值为13.33 nm,RMS值为1.19 nm。分析结果满足设计指标所要求的RMS〈λ/20,PV〈λ/4(λ=632.8 nm),证实了该支撑方案可行。
水平式望远镜经纬轴垂直度误差的一种光学检测方法
水平式望远镜经轴与纬轴的不垂直度直接影响到望远镜的指向误差,准确检测出望远镜两回转轴系的垂直度误差并加以修正是非常必要的。本文以某400mm水平式望远镜为例,针对水平式望远镜经纬两轴的特点提出了一种经纬轴垂直度误差的光学检测方法。通过检测数据计算获得该水平式望远镜的经纬两轴垂直度误差为46”,分析出检测误差为11”,借助检测数据对实际测量数据进行修正后,达到了提高望远镜指向精度的目的。
基于液压支撑的大口径主镜稳像技术
望远镜的俯仰运动会使主镜相对镜室的位置发生改变,进而影响望远镜的稳定成像。为了校正主镜位置变化,本文提出了利用液压支撑对主镜相对镜室位置进行实时控制,实现对主镜稳像的方法。利用实验室现有的1.23mSiC主镜为监测目标搭建了测试系统,设计了基于6个位移传感器的位置监测系统。在未启用和启用液压稳像技术两种状态下,测试了主镜位置变化,并对主镜位置进行解算,试验结果表明液压支撑技术有确实的稳像效果。当镜室转动40°时,未稳像的主镜其X向平移变化为150μm,绕X轴转角为2.5"。采用液压稳像后,X向平移变化减小为3μm而绕X轴转角减小为0.4"。测试结果表明,基于液压支撑的主镜稳像技术可以实现对主镜位置的实时检测和控制。
大口径主镜支撑液压缸用弹性膜片优化设计
在大口径望远镜主镜液压支撑形式中,液压缸需要一种简单可靠、不需要润滑维护的精密导向机构,而且可以输出较大行程范围(毫米级)。设计了一种柔性金属膜片机构用于液压缸的径向定位导向。建立了金属膜片机构有限元模型,采用几何非线性算法,研究分析了不同拓扑结构对金属膜片柔度的影响,通过不同拓扑结构金属膜片的性能分析对比可知,V型膜片能够很好地克服应力刚化,保证柔度的稳定性;以柔度为优化目标,对金属膜片V型的位置尺寸和形状尺寸进行了优化设计,金属膜片在导向方向上的柔度提高了14.2%;搭建了柔性金属膜片机构柔度测试平台,验证了仿真计算结果。结合实验和仿真结果可知V型柔性金属膜片具有良好的定位导向性能,对用于液压支撑的液压缸和主动光学的微位移促动器的导向机构的设计具有指导意义。
广义最小二乘法在主动光学模式定标中的应用
为了解除4 m轻量化反射镜支撑系统间存在的相互耦合作用,提出了采用广义最小二乘法进行主动光学的模式定标计算。首先,介绍了4 m轻量化反射镜的支撑系统,推导出液压Whiffletree支撑系统工作下主动光学校正力组满足解耦条件的等式约束方程,将节点面积加权因子修正后的Zernike多项式面形拟合过程作为有限元分析前处理,建立主动光学的响应矩阵。其次,采用广义最小二乘法求解同时满足等式和不等式约束下的最佳校正力组。最后,将提出的方法应用于重力印透效应产生的镜面变形主动力解算,分析不同阻尼因子对解算结果的影响。结果表明:阻尼因子取7.4e-9时,达到了满足约束条件的最佳校正效果,镜面面形均方根由最初的271.5 nm通过校正后变为8.3 nm。验证了广义最小二乘法应用于4 m轻量化反射镜主动光学校正力组解算的可行性。