电动静液压主动悬架自适应Smith反馈时滞控制
为了提高电动静液压(electro hydrostatic actuator,简称EHA)主动悬架在时变时滞下的减振效果,提出了一种自适应Smith反馈时滞控制策略。首先,建立了含时滞的EHA主动悬架模型,根据时滞微分方程理论得到可控阻尼与临界时滞的关系,分析了临界时滞下时滞对悬架系统动态特性的影响;其次,以遗传算法优化得到的最优时滞反馈系数及时滞量为补偿参考,采用自适应Smith反馈时滞控制对时滞主动力进行补偿;最后,仿真分析了自适应Smith反馈时滞控制策略下悬架的动态特性,开展了EHA主动悬架时滞控制台架试验。结果表明:自适应Smith反馈时滞控制下的悬架动态特性得到改善,有效降低了时滞对EHA主动悬架的影响。
一种汽车磁流变半主动悬架的研制
为了改善车辆平顺性和行驶安全性,设计了一种基于单出杆式磁流变减振器的汽车半主动悬架。在分析传统的磁流变减振器力学模型的基础上,提出了一种改进的磁流变减振器多项式模型,试制了磁流变减振器样机,进行了磁流变减振器的力学特性试验,设计了半主动悬架天棚控制器、地棚控制器和LQG控制器,进行了不同控制策略的对比仿真分析,开发了磁流变半主动悬架试验测试系统,开展了该磁流变半主动悬架的LQG控制台架试验测试。结果表明,所研制的磁流变减振器耗能效果良好,能够最大限度地发挥振动衰减功能。与被动悬架相比,在4Hz和5Hz正弦激励下磁流变半主动悬架的簧载质量加速度分别降低15.80%和23.36%,在随机路面激励下簧载质量加速度降低19.46%。
汽车磁流变半主动悬架混合天棚控制仿真
设计开发有效的控制策略是实现半主动悬架功能的关键。在分别对天棚控制和地棚控制半主动悬架的工作域分析的基础上,兼顾天棚控制和地棚控制各自优点,提出并设计了一种混合天棚半主动悬架控制算法,建立了汽车半主动悬架系统动力学模型,进行了磁流变减振器的力学试验建模,开展了磁流变半主动悬架的混合天棚控制仿真分析。结果表明,相对于被动悬架,混合天棚控制半主动悬架的簧载质量加速度降低了9.4%,悬架动挠度降低了20%,轮胎动载荷降低了3.2%。混合天棚控制半主动悬架不仅能够降低簧载质量加速度,同时明显减小了悬架动挠度和轮胎动载荷,提高了汽车的平顺性和操纵稳定性。
车辆电动静液压主动悬架内模PID控制研究
为了降低响应时间对基于电动静液压作动器(Electro-Hydrostatic Actuator,EHA)的主动悬架动态性能的影响,设计了EHA主动悬架的内模PID控制器。建立了EHA作动器的动态数学模型,在对作动器高阶模型进行一阶简化的基础上,设计了内模控制器;通过对该控制器进行泰勒级数一阶展开,导出了PID控制器的参数表达式,并整定了PID参数。搭建了EHA主动悬架的内模PID控制仿真模型,并进行了仿真分析。结果表明,内模PID控制能使EHA作动器输出的主动力在响应时间上得到较好的控制,明显改善了主动悬架的动态性能。
电动静液压主动悬架的内模-Smith时滞补偿控制
提出一种内模-Smith时滞补偿控制方法进行电动静液压主动悬架的时滞控制。对电动静液压作动器(Electro-Hydrostatic Actuator,EHA)进行了响应特性试验,采用一维线性插值方法对试验数据进行了模型拟合,并得到了含纯时滞的作动器简化模型。针对作动器的惯性响应设计了内模控制器,利用一阶泰勒表达式转化成了PID控制器形式;将作动器的纯时滞视为理想主动力的时滞,设计了Smith时滞补偿控制器。搭建了EHA主动悬架的内模-Smith时滞补偿控制仿真模型,并进行了仿真分析。结果表明,内模-Smith时滞补偿控制能使作动器输出的主动力在时间上得到较好的控制,明显改善了主动悬架的动态性能。
馈能式磁流变半主动悬架协调控制研究
为了优化车辆悬架的减振控制及振动能量回收提出了一种基于协调控制的馈能式磁流变半主动悬架。建立了1/4车二自由度悬架力学模型、磁流变减振器数学模型和馈能模型利用MATLAB/Simulink软件对馈能特性进行了仿真分析并进行了参数敏感性分析。分析了减振器实现自供能的条件及结构参数的影响设计并分析了多模式协调控制下的悬架动力学特性和馈能特性。结果表明该减振器馈能结构参数对自供能影响较大;协调控制器能够有效协调悬架系统减振与馈能关系降低能耗阻尼力可控性好能够衰减车辆振动馈能特性效果良好验证了该结构的可行性。
电动静液压作动器EHA及其在汽车主动悬架中的应用
将电动静液压作动器EHA(Electro—Hydrostatic Actuator)应用于汽车主动悬架中,并提出了基于EHA的主动悬架样机结构。同时,建立了1/4汽车主动悬架动力学模型,设计了用于EHA主动悬架的模糊控制器,并进行了仿真和实验研究。结果表明,基于EHA的模糊控制主动悬架明显改善了汽车的平顺性和操纵稳定性。
基于电动静液压的车辆主动悬架样机及试验系统设计研究
文章介绍了一种基于EHA(Electro-Hydrostatic Actuator)的新型主动悬架的结构、组成与原理。设计了该电动静液压主动悬架的物理样机,包括液压缸的设计、液压泵的选型、悬架弹簧的设计、直流电机的选型、控制电路设计等。为了对该主动悬架进行试验研究,设计开发了振动台及试验台架,为主动悬架样机的试验奠定了基础。
基于电动静液压作动的新型汽车主动悬架
作动器是汽车主动悬架系统研究的关键。在分析传统被动悬架和电液伺服主动悬架及功率电传作动系统PBW(Power-By-Wire)的基础上,提出了基于功率电传的电动静液压作动器EHA(Electro—Hydrostatic Actuator)新型汽车主动悬架结构型式。建立了1/4汽车动力学模型,设计了用于EHA主动悬架控制的模糊控制器。为了研究可控悬架的响应特性以及验证模型的有效性,利用建立起的基于EHA的主动悬架动力学模型,在一定路面输入下进行了仿真分析。结果表明,与传统被动悬架相比,基于EHA的模糊控制主动悬架大大改善了汽车的平顺性和操纵稳定性。
电动静液压主动悬架双滑模控制研究
为了抑制电动静液压作动器(EHA)主动悬架作动器输出主动力的脉动,改善车辆的动态性能,提出了一种EHA主动悬架双滑模控制策略。建立了EHA主动悬架动力学模型,设计了基于模型参考的外环滑模控制器和电机内环滑模控制器,仿真分析了不同路面激励下该悬架的输出主动力特性和车辆动态特性,并开展了台架试验测试。结果表明,双滑模控制策略能够抑制电机输出主动力所产生的脉动,使实际输出主动力有效跟踪理想主动力,提高了EHA主动悬架的动态特性。