双行星排式液驱混合动力汽车模式切换的协调控制
针对双行星排式液驱混合动力汽车这一构型,分析了它在运行模式切换时出现动力不足和冲击的原因,提出了提高动力性和减小冲击的协调控制算法,同时,为拉维娜氏结构提出其高、低速比切换时两个离合制动器的控制方法。用AMESim和Matlab搭建了联合仿真模型,进行仿真。结果表明,采用协调控制后的车辆在运行模式切换时动力性和冲击度都得到改善,拉维娜氏结构高、低速比切换也达到预期要求。
重型车辆液压辅助驱动系统的前馈+反馈复合控制
基于传统重型车辆开发了液压辅助驱动系统,可使车辆在低附着路面上从单一的机械后轮驱动变为全轮驱动,从而提高车辆的动力性.为提高整车牵引效率,文中设计了前馈+反馈控制器来调节该系统中变量泵的排量,即通过前馈环节由挡位确定泵的目标排量,再根据前后轮转速差反馈环节动态调节泵的最终排量.基于Matlab/Simulink和AMESim平台的联合仿真结果表明,在典型的低附着路面条件下,使用液压辅助驱动系统后,车辆的最大爬坡度和牵引力分别提高了14.4%17.2%和13.4%15.6%.实车测试结果表明,该策略可保证液驱系统平稳工作,仿真模型具有较高的准确性.
湿式离合器液压执行系统建模与仿真
针对湿式离合器液压执行系统,在分析其工作原理和结构的基础上,在机械域和液压域上分别对关键组成部分比例压力电磁阀和离合器油缸活塞建立数学模型,并采用AMESim软件对湿式离合器的液压执行系统进行建模;为了验证所搭建模型的有效性,在给定不同的激励电流情况下分析系统的动态响应;针对所搭建的AMESim模型,采用传统PID控制算法和基于模型的前馈+反馈控制算法控制输出油压,对比验证了跟踪效果。仿真结果表明:搭建的模型具有良好的动态特性,前馈+PID反馈的控制算法较PID算法的控制效果更好。
轮毂液驱车辆泵控系统建模
针对轮毂液驱混动系统当中关键部件:斜盘式轴向柱塞变量泵的动态特性进行建模仿真与试验对比分析.通过对斜盘式轴向柱塞变量泵进行力学分析,建立柱塞泵关键部件的运动方程.在AMESim中搭建模型,对斜盘式柱塞变量泵在不同脉冲宽度调制(PWM)占空比下的排量响应特性进行仿真,将仿真结果与试验结果进行对比分析.结果表明:搭建的AMEsim模型与实际斜盘式轴向柱塞泵的响应特性高度吻合,通过参数调节可以快速得到具有不同响应特征的泵控系统模型.建模过程中对非线性动力学问题的简化,避免了在实际系统中进行测试的困难,节省实际测试的费用和周期.
行星齿轮混联液压驱动车辆匹配方法的研究
针对带行星机构的液压混联式混合动力客车,提出了基于城市综合循环工况的动力系统关键元件参数匹配方法.该方法主要以保证车辆动力性为前提,综合考虑整个系统效率,提出“由主及次”的顺序依次确定发动机、液压元件A与B和蓄能器动力元件功率及其转矩和转速的参数匹配原则,最后确定了整个系统主要元件的关键参数和选型.通过Matlab/Simulink建模和仿真进行验证,结果表明:所提出的匹配方法完全满足设计要求.
重型车辆液压再生制动能量回收率的研究
在传统后驱重型车辆的基础上, 加入液压栗、 轮毂液压马达、 蓄能器等装置形成一种新型液驱混合动 力系统, 可实现液压再生制动.通过在传统制动踏板空行程内标定纯再生制动阶段的方式, 实现基于制动踏板行程 的制动力控制.建立整车和液压系统模型, 进行再生制动过程仿真, 分析蓄能器能量回收率及其影响因素.仿真结 果表明 相同挡位下, 制动踏板行程越大, 蓄能器能量回收率越低; 相同制动踏板行程下, 挡 位越低, 蓄能器的回收率 越高.
重型卡车轮毂马达液压驱动系统建模与仿真
在传统重型车辆上,增加一套由泵和马达等组成的轮毂马达液压驱动系统,使其由原来的两轮驱动变成四轮驱动,对该系统的结构原理与工作模式进行了分析,研究建立了该系统的动力学理论方程,使用Matlab/Simulink和AMESim软件分别建立系统的机械动力系统和液压系统模型,并进行车辆牵引力及爬坡性能的联合仿真。仿真结果表明:使用液压轮毂驱动系统后,车辆牵引力提高了13.4%,爬坡度提高了14.4%,整车通过性得到明显提高。
液压混动系统泵排量控制研究
针对闭式液压回路中变量泵排量控制方法精度较低的问题展开研究,基于泵控系统中伺服阀的脉宽调制(PWM)控制,推导出占空比信号与变量泵排量的线性关系,在AMESim软件平台上搭建了泵控系统仿真模型,并基于试验测试数据对模型进行校核,基于泵控系统模型提出了PID反馈控制、前馈+反馈控制和三步法控制的泵排量控制方法,并进行测试对比分析.仿真结果表明,三步法控制在动态响应及快速稳定方面优于PID反馈控制,相比于前馈+反馈控制,采用三步法控制的泵排量动态响应误差减少了35.5%.
轮毂液压辅助驱动车辆蠕行模式控制研究
针对轮毂液压辅助驱动车辆蠕行模式下液压泵排量控制粗放的问题,提出一种蠕行模式控制方法。采用无级变速器的速比控制思想实现液压泵的排量控制,利用AMESim软件搭建轮毂液驱车辆仿真平台,验证蠕行模式控制方法的响应特性和控制效果。仿真结果表明,在系统工作范围内,提出的蠕行模式控制方法可以实现速比的无级控制,进而通过调节发动机工作点实现车辆的最佳经济性运行。该项研究对轮毂液驱车辆控制及实际开发应具有一定的借鉴价值。
轮毂液压混合动力商用车主动防侧翻控制
针对轮毂液压混合动力重型商用车功能特点,提出了基于前轮轮毂液压泵/马达差动制动的主动防侧翻控制算法。首先,建立重型车辆线性二自由度模型,根据线性二次型最优控制原理设计主动防侧翻控制器,并决策最优横摆力矩;其次,结合轮毂液压混合动力系统特点,利用安装于车辆前轮的二次元件液压泵/马达再生制动实现前轮主动制动,并设计液压泵/马达再生制动转矩前馈+反馈控制器;最后,利用TruckSim与AMESim仿真软件分别建立整车模型以及液压系统模型,并基于MATLAB/Simulink建立主动防侧翻控制算法,通过MATLAB/Simulink、Trucksim和AMESim三软件搭建联合仿真平台,选取阶跃转向和鱼钩转向两种典型转向工况进行仿真验证。结果表明,所提出的主动防侧翻控制算法能够有效提高车辆侧倾稳定性,且利用前轮轮毂液压泵/马达实现主动制动时可以有效回收部分制动能量,提...
-
共1页/10条