电液位置伺服系统的变速趋近律滑模控制抖振抑制
针对指数趋近律变结构控制应用于电液位置伺服系统存在控制性能与抖振不能兼顾的问题,设计出新型变速指数趋近律滑模控制器。建立基于偏差变量的电液位置伺服系统状态空间模型,推导出指数趋近律滑模控制器结构,进一步确定包含偏差变量的切换函数及其导数,通过定义系统的Lyapunov函数,证明了趋近律控制下系统的稳定性。研究通过实时分析运动点距离滑模面的位置及趋近速率,采用模糊参数优化策略动态调整到达速度的变速趋近律方法,实现在滑模面外时加快响应速度并增强系统克服摄动及外部干扰能力,到达滑模面时柔化控制量以消除抖振的目的。通过试验研究变速趋近律与传统指数趋近律控制下的系统方波跟踪动态响应、稳态误差及控制量抖振指标,结果表明变速趋近律不仅保证到达运动的快速性,且有效降低了稳态抖振,具有良好的稳态性能。...
纯电驱液压挖掘机复合动作电液能量回收再利用系统研究
为了改善纯电驱液压挖掘机工作过程中大量能量浪费的情况,提出一种基于超级电容和蓄能器的挖掘机复合动作能量回收与再利用系统。首先对该系统的主要元件进行参数匹配和泄漏分析,然后基于SimulationX平台建立某6 t纯电驱液压挖掘机能量回收再利用系统仿真模型,对标准工况下的一个循环周期进行运行及能耗特性的仿真研究。结果表明,该系统比原纯电驱液压挖掘机系统实现了29%的节能,达到了良好的节能效果。
开式容积与储能平衡协同控制挖掘机动臂的能效
为适应挖掘机电动化的发展需求,提出一种开式容积与储能平衡协同控制液压挖掘机动臂的原理,通过改变伺服电机转速控制定量液压泵输出流量匹配负载需求,三腔液压缸的独立储能容腔连接蓄能器,将动臂下降时的重力势能转化为液压能存储并在举升动臂时再利用。研究中,分别测试了变量泵和伺服电机的动态响应速度,并测试了定转速异步电机驱动变量泵、变转速伺服电机驱动定量泵这两种动力源的能效,构建了液压挖掘机动臂储能平衡试验测试系统,对比分析了这两种动力源驱动挖掘机动臂的能效特性。结果表明,与异步电机驱动变量泵作为动力源相比,采用伺服电机驱动定量泵作为动力源驱动挖掘机动臂可降低峰值功率19.8%,一个周期内降低能耗58.7%,节能效果非常显著。
纯电驱液压挖掘机电气式动臂势能回收再利用系统研究
针对纯电驱液压挖掘机传统的动臂电气式回收系统无法实现回收能量再利用的问题,提出一种势能回收再利用系统。以某型6 t纯电驱液压挖掘机为研究对象,对其回收系统各主要元件进行了参数匹配与损耗研究,基于SimulationX平台建立起该系统机电液联合仿真模型,对系统的动态特性与能耗特性进行了仿真研究。结果表明,系统在动臂下落时回收能量效率达到了60%。相比普通纯电驱液压挖掘机的动臂系统实现了21.8%的节能,该项研究实现了动臂回收能量的再利用。
基于虚拟样机的轴向柱塞马达特性及振动机制分析
轴向柱塞马达是液压系统中执行机构的动力元件,其运行过程中产生的振动和噪声严重时会引发传动失效、流体泄漏等重大问题。基于TPA分析法,对轴向柱塞马达运转中的振动、噪声产生机制及传递路径进行理论分析。基于AD⁃AMS和AMESim平台,以机械结构为核心,引入流体动力特性,搭建轴向柱塞马达机-液耦合模型,对其动、静态特性及运转中振动、噪声产生机制进行了进一步分析,指出通过优化配流盘和马达外壳结构可实现减振降噪的目的。对比相关文献中轴向柱塞马达参考数据,输出特性等方面相对误差小于6%,且运动特性符合理论模型,优于现有轴向柱塞马达仿真模型,验证了机-液耦合模型具有较好的计算精度。以仿真评估代替物理样机总体性能评估,能最大程度缩短产品研发周期,降低研发成本,其振动机制分析又可为柱塞马达结构优化提供理论依据。
柱塞泵预紧力对滑靴回程盘影响的仿真分析
轴向柱塞泵中滑靴的倾覆偏磨、回程盘的磨损与其所受应力大小有关。为改善二者的磨损性能,研究预紧力增大对滑靴、回程盘应力变化特性的影响。通过对A4VG125型柱塞泵中心弹簧预紧力的分析计算,应用仿真软件ADAMS和ANSYS搭建轴向柱塞泵的刚柔耦合模型,研究分析预紧力增大时,滑靴、回程盘应力的变化规律,得到同周期内最大应力点图和应力云图。分析结果表明:合理增大预紧力有助于减小滑靴平面、滑靴颈部的磨损;回程盘孔口与滑靴颈部的碰撞得到改善;当预紧力为707N时,该型号轴向柱塞泵的滑靴与回程盘应力分布状态最好。
液压阀的实验建模方法
讨论了一种液压阀实验建模方法,研究了瞬态压力发生器的工作特性、相应参数的测量和数字信号处理,以及使用实验数据建立数学模型的方法。最后讨论了用这种装置进行压力传感器动态标定的方法。
装载机电液混合流量匹配转向系统特性研究
为提高传统装载机能量利用率,提出采用变转速定量泵独立供油的电液流量匹配转向原理,用于控制装载机转向,将装载机方向盘转向角速度与伺服电机转速进行合理匹配,使液压泵输出相应流量到转向系统中,当无转向信号时,转向动力源不输出流量。若电液流量匹配转向系统出现故障,则该液压转向系统经电磁阀自动切换到原有转向系统,继续完成转向作业。首先建立铰接式装载机机械结构动力学与电液混合系统联合仿真模型,利用该模型对电液流量匹配系统的转向过程进行仿真,进一步建立试验测试样机,对转向系统的动态及能耗特性进行测试,并与原有转向系统的转向特性进行对比。研究结果表明:采用电液混合流量匹配转向系统,可减少转向过程的节流损失并消除溢流损失,节能约16%,并可减小压力冲击和波动,系统的稳定性也得到明显提高。
PLC在液压拉深垫泵站控制中的应用
采用S7-400系列PLC实现了对液压拉深垫泵站电机的控制,由于系统泵站所用电机功率都比较大,设计中采用了星/角转换的启动方式。根据系统控制要求编写了PLC程序,给出了详细的流程图,实现了泵站电机的星/角启动和安全连锁控制,保证了电机的安全运行和系统的正常工作。
重复控制补偿的PlD电液伺服位置控制
针对液压伺服系统难以精确控制的特点,采用重复控制补偿的高精度PID进行控制。通过建立数学模型并在Simulink中对电液位置伺服系统进行仿真,研究表明该控制策略应用在电液位置伺服控制系统中跟踪性能好、精度高。