气动人工肌肉在康复器械中的应用现状
本文介绍国内外气动人工肌肉在康复医疗器械中的应用现状,重点分析近年来气动人工肌肉在上肢和下肢康复器械中的应用,其中上肢康复器械包括手部、手腕和手臂,下肢康复器械包括腿部、膝关节和踝关节;应用实例介绍了气动人工肌肉的工作特点和应用范围,并且对同功能康复器械对比分析。
一种基于气动人工肌肉的下肢康复设备设计
由于社会老龄化和城市化的加速,不健康的生活方式普遍存在,脑血管疾病的风险因素普遍暴露出来。脑血管疾病常伴有身体运动障碍,给人类生活带来极大不便。因此,行走能力的恢复是病人康复的主要目标。传统的康复物理治疗是人工或简单的医疗设备进行的,远远不能满足病人的需要。使用康复机器人可以有效地弥补传统治疗方法的缺点和不足,并提供显著的优势。其中,下肢康复机器人已逐渐成为当前的研究热点。目前的下肢康复机器人是为整条腿设计的,它们可以通过穿戴的方式完成整条腿的康复训练。近年来,行走辅助机器人已被引入到先进的康复设施中,以提高患者的康复效率,恢复患者的行走功能。专家治疗师可以将这种设备应用于不同的患者,然而患者的康复效果以及恢复情况主要依赖于治疗师的专业知识。气动人工肌肉高功率重量比和与肌...
气动人工肌肉静态特性实验及模型仿真研究
由于受到材料、端部结构、内部摩擦力等因素的限制,建立准确的气动人工肌肉数学模型十分困难。针对气动人工肌肉的内部摩擦力和橡胶弹性力,建立了比理想模型更加符合实际的改进数学模型。根据DMSP型气动人工肌肉的结构与特性,设计并完成了基于LabVIEW的静态特性实验。经过对比分析实验数据与应用MATLAB仿真得到的理想模型曲线和改进模型曲线,研究了橡胶弹性力与摩擦力对气动人工肌肉轴向收缩力的影响,为下一步拮抗关节和控制方法的研究打下基础。
上肢康复机器人主动康复训练控制策略
近年来,脑卒中和交通事故造成上肢损伤的人数逐年上升,医疗领域对康复器械的需求越来越大。为满足实际需求,开发以气动人工肌肉为驱动器的4自由度(肩关节外收/内展(被动)、前驱/后伸、肘关节屈曲、腕关节屈曲)可穿戴上肢康复机器人。首先设计上肢康复机器人的结构,并采用气动人工肌肉作为肘关节与腕关节的驱动器。然后针对该上肢康复机器人,研究主动康复训练控制策略,设计两种控制策略。通过穿戴实验验证控制策略的有效性和实际应用价值。
PAM-Motor复合驱动仿生肩关节结构设计及动力学特性研究
针对仿生机器人关节重载情况下难以实现精确控制的问题,以及气动人工肌肉(Pneumatic artificial muscle,PAM)控制非线性、时变性、滞后性等特点,受生物关节在肌肉和骨骼的协作下产生运动的启发,提出一种气动人工肌肉和电机复合驱动的新型驱动仿生肩关节结构设计,用于提高仿生机器人肩关节的控制精度及驱动性能。基于Chou模型及能量守恒定理,推导了复合驱动仿生肩关节结构参数与动力学特性之间的映射模型;通过构建基于拉格朗日动力学的PAM-Motor复合驱动系统俯仰运动和侧摆运动的动力学模型,探究了仿生肩关节复合驱动机理。研究结果表明,PAM-Motor复合驱动仿生肩关节具有良好的精度、灵巧度和承载能力,验证了复合驱动仿生肩关节结构的合理性和有效性。
基于气动人工肌肉几何模型的灵巧手自适应跟踪控制
将气动人工肌肉作为执行器驱动灵巧手完成抓取任务,对灵巧手的单关节建立了运动学与动力学模型,建立了气动人工肌肉的理想几何模型,建立了灵巧手指关节的非线性控制模型,设计了自适应控制律。在Simulink中使用PID控制器和自适应跟踪控制器,对模型进行控制仿真,通过分析仿真结果,对PID控制与自适应跟踪控制的控制效果进行评价。
基于RBF神经网络的气动人工肌肉PID位置控制
搭建了气动人工肌肉静态测试平台,在0.1~0.8 MPa气压下进行多次测量试验,对气动人工肌肉进行特性分析,根据理论模型和测试数据建立了数学模型,模型求解精度较好。考虑外负载、气源气压和系统摩擦等因素对数学模型的影响,结合RBF网络的快速学习能力设计了一种基于RBF网络的PID控制策略。在外负载50~200 N的条件下,搭建了气动人工肌肉动态测试平台并进行了多组位置控制试验。结果表明,传统PID控制只能在一定的外负载范围内实现较好的位置控制,基于RBF网络的PID控制能自适应调整PID参数,且响应速度快,调节时间短,超调量小,能更好地补偿其数学模型误差并实现精确的位置控制。
基于实验模型的气动人工肌肉位置控制研究
针对目前气动人工肌肉数学模型建模过程较为复杂的问题,提出一种气动人工肌肉的实验模型辨识方法。以气动人工肌肉-质量系统为实验对象,对其输入气压与气动肌肉收缩量之间的关系模型进行实验辨识研究。采用欠阻尼二阶系统来描述气动人工肌肉充气与排气过程的动态响应.并利用实验数据对模型参数进行辨识。最后基于辨识得到的模型进行气动人工肌肉的位置控制,实验结果验证了模型的有效性。
足底驱动型下肢康复机器人的运动学建模与轨迹跟踪控制研究
为简单、精确地实现对一种由高速开关阀和气动人工肌肉作为驱动控制单元的足底驱动型下肢康复机器人的轨迹跟踪控制,提出了一种基于MATLAB/Simulink的仿真控制模型.基于模块化思想,将该机器人控制系统划分为系统输入模块、位置逆解模块、单支链驱动控制模块和位置正解模块.首先对该机器人进行结构分析,在此基础上推导出其运动学正逆解模型,为位置正逆解模块提供理论依据.然后,建立人体下肢运动学模型,带入关节角度数据得到足底运动轨迹,在此基础上用傅里叶级数拟合得到足心和背伸/跖屈角对时间的函数表达式,作为系统的输入模块.最后,采用关节空间控制方法结合各子模块构造出下肢康复机器人控制仿真模型,特别地,采用了实验的方法验证了单支链驱动控制模块的准确性.在此基础上,在MATLAB/Simulink模块中对所建立的系统仿真控制模型进行了仿...
气动人工肌肉智能控制系统研究
介绍了一种新型的气动执行机构——气动人工肌肉,完成了基于单片机控制的气动人工肌肉位置控制系统,建立了数学模型,控制方法结合了神经网络与PID方法,PID的程序由单片机实现,神经网络的程序基于C++编写,由Qt平台实现并完成良好的人机交互界面,实现了人工智能控制。