截面最小二乘圆心偏心误差运动的分离方法
被测截面的最小二乘圆心不但是被测截面圆度误差的评定基准,也是圆柱度形状误差的重构基准,由于采用误差分离技术分离出的回转误差运动是截面最小二乘圆心的偏心误差运动和纯回转误差运动的叠加,有效地提取截面最小二乘圆心的位置,一直是研究难题.通过对圆度误差的分离过程和分离出的回转误差运动进行分析,利用三角函数序列的正交性,提出了一种不涉及回转轴纯回转误差运动的一阶谐波分量,完整提取截面最小二乘圆心偏心误差运动的分离方法,并通过实验验证了该项技术的正确性.
直角坐标系下回转表面形位误差数学模型的研究
本文解决了直角坐标系下形位误差评定时最小二乘圆心与最小二乘轴线的求取问题;建立了任意空间位置回转表面各项形位误差的最小二乘数学模型。仿真分析结果表明,该模型具有理论的正确性与实际的可行性。
圆柱度表面形貌重构基准的提纯
除零件截面的尺寸变化及截面的圆度形状误差外,截面间的相互位置同样是影响零件圆柱度形状误差大小的重要因素,因此可以把截面最小二乘圆心的位置作为圆柱度形状误差重构的基准点.由于随机误差的干扰以及截面最小二乘圆心的回转误差运动不具严格的周期性,导致了截面最小二乘圆心并不在某一确定位置上周期性复现.考虑到截面最小二乘圆心的误差运动仅和回转误差运动中的一阶谐波分量有关,提出了一种新的"二乘心提纯法"以获得重构基准,即利用回转误差运动中通常被忽略的一阶谐波分量进行零件圆柱度形状误差的重构.通过实测验证了该方法的有效性.
圆柱逼真形貌重构基准的提纯技术
本文提出应用回转误差运动中的一阶谐波分量进行零件圆柱度形状误差的重构,实际应用表明这种重构基准提纯技术行之有效,对提高重构精度是有益的.
-
共1页/4条