基于CFD的机械随动调节高度控制阀数值仿真
机械随动调节高度控制阀是列车悬挂控制装置的核心部件,其性能的好坏直接影响系统能否稳定工作。在设计过程中,采用CFD对其进行仿真计算,通过对其流场特性的分析,可以验证其流量特性是否满足系统需求。针对机械随动调节高度控制阀内部气体流动特性,建立了机械随动调节高度控制阀流场仿真模型,利用Fluent分析了机械随动调节高度控制阀阀口在不同开度下的流场特性,研究结果为机械随动调节高度控制阀流量性能指标试验提供理论支撑。
FADS测压管路动态响应特性分析
通过建立管路终端负载为容腔的测压管内气体压力传递数学模型,研究嵌入式大气数据传感系统(FADS)测压管路动态响应特性。压力传递数学模型的建立综合考虑管路黏性损失、热传递效应等影响,仿真分析FADS系统测压管路频率响应特性,结果表明:增大管路内径、管路长度、容腔容积及大气高度,管内压力传递延迟时间增大。仿真结果对压力传感器的合理设计有一定的指导意义。
基于单神经元的高压气动阀阀芯位置伺服控制研究
某高压大流量气动阀采用两级控制策略,先导级为高压电一气伺服阀,功率级为大流量气控滑阀. 针对功率级滑阀阀芯位置控制性能受气源压力,摩擦力等非线性因素影响较大的特点,采用单神经元自适应控制器实现对功率级阀芯位置的高精度控制,对其控制特 性进行仿真研究.仿真结果表明,该控制策略具有较好的鲁棒性,快速跟踪性和控制精度,为进一步研究高压大流量气动阀奠定良好基础.
基于反馈线性化的高压大流量气动阀阀芯位置伺服控制研究
某高压大流量气动阀采用两级控制方式,先导级为高压电-气伺服阀,功率级为大流量气控滑阀,功率级滑阀阀芯位置控制性能受气源压力变化影响较大,要解决气源压力变化对功率级阀芯位置稳态控制性能的非线性影响,为此建立了阀芯动态数学模型,设计了基于反馈线性化方法的控制策略,对其控制特性进行了仿真研究。仿真结果表明,该控制方法减小了气源压力变化对阀芯位置稳态控制性能的影响,使不同气源压力对应响应时间及超调量一致性较高,稳态控制精度较高,为进一步研究高压大流量气动阀奠定了良好的基础。
高压气动系统负载容腔压力伺服控制仿真研究
为满足某气体发生系统安装空间小、重量轻、动态响应快、控制精度高等要求,设计了高压气动压力伺服控制系统,并采用高压电-气伺服阀实现了负载压力的高响应高精度控制。建立了系统数学模型,包括高压气瓶热力学方程、高压电-气伺服阀传递函数与流量方程、负载容腔压力变化与排气流量方程等子模型,并设计了反馈线性化PID控制器。基于MATLAB/Simulink平台建立了高压气动系统仿真模型,仿真研究了高压气瓶容积与初始气源压力、负载容腔排气孔通径等参数对系统负载压力控制性能的影响规律。研究结果为该系统的优化设计与实验研究提供重要理论依据。
高压电-气伺服阀间隙结构的零位泄漏特性
高压电-气伺服阀是高压气动伺服系统的核心部件,其阀芯阀套结构存在的环形间隙和圆角等问题,导致了伺服阀在零位时产生泄漏,从而影响伺服系统的高精度控制和稳定性。为了研究高压电气伺服阀间隙结构对零位泄露特性的影响,首先,建立了伺服阀内部跨尺度流场计算模型,并采用计算-流体力学的方法,分析了高压电-气伺服阀间隙结构对零位泄漏特性的影响;然后,建立了高压气体零位泄漏流量的数学模型,得到了带有环形间隙和阀芯圆角的高压电-气伺服阀流量随阀口开度变化的规律。结果表明,滑阀伺服阀零位泄漏量与气体压力和圆角半径变化近似呈线性关系,与环形间隙高度呈二次凹函数曲线关系;带有环形间隙和圆角的高压电-气伺服阀流量随着阀口开度变化的趋势是恒定−非线性−线性。最后,搭建了伺服阀零位泄漏流量特性测试系统,并通过实验验...
全回转舵桨液压系统回转抖动控制方法探析
针对全回转舵桨液压系统出现的回转抖动现象,基于AMESim搭建了含平衡阀的回转液压系统仿真模型,详细分析了平衡阀的最大节流流量、阀芯行程-通流面积特性对其动态特性的影响。结果表明:平衡阀控制压力的周期性波动会导致阀芯位置、通流面积的波动,是含平衡阀系统发生回转抖动现象的根本原因;当CB系列平衡阀的最大节流流量略小于或者等于系统设计流量时,回转动作更容易获得较好的平稳性;当含平衡阀系统的设计流量小于平衡阀最大节流流量时,CB系列平衡阀的通流面积梯度越大则回转抖动越严重,反之回转动作越平稳,所以全节流型平衡阀更容易获得平稳性,但这是以损耗回转速度为代价的;MBE*改进型平衡阀阀芯的有效行程大,有效地降低了通流面积对阀芯行程的敏感度,不仅在系统流量较小时能够获得良好的稳定性,而且在设计流量较大时仍能保持...
大减压比高压气动比例减压阀阻尼孔耦合特性仿真研究
设计了一种大减压比高压气动比例减压阀,采用先导控制方式,通过调节比例电磁铁推力控制减压阀输出压力。通过进气阀芯与先导阀芯联动,调节进入控制腔气量,从而控制主阀芯开度,调整主阀芯节流作用,最终控制减压阀输出压力,达到输出压力与电磁铁推力动态平衡。控制腔的压力受控制腔进气阻尼孔大小、排气阻尼孔大小及进气阀开度影响。为此,建立了该比例减压阀的动力学及热力学数学模型,根据动力学及热力学数学模型搭建比例减压阀系统仿真模型,通过数值仿真分析主阀芯控制腔进气、排气阻尼孔参数与进气阀芯开度间耦合特性对该比例减压阀输出压力的影响,进一步优化该比例减压阀结构,提高减压阀输出压力控制精度及响应速度。本研究对同类型高压气动减压阀优化设计及输出压力控制性能的提高提供一定参考。
深海滑翔机水下气动布放技术研究
水下滑翔机作为一种新型自航式海洋观测平台,因具有隐蔽性高、续航能力强、低功耗、水下工作范围大、制造成本低等特点,成为海洋环境监测、海洋资源探测、海底地貌测量及水下情报搜集等海洋科学研究与军事作战的理想工具.该文综述了水下滑翔机国内外研究概况,针对课题组所研制深海滑翔机水下布放特点,提出了一种基于高压气动控制技术的深海滑翔机水下布放模式.介绍了深海滑翔机水下气动布放系统结构组成、功能、工作原理,在此基础上,重点对深海滑翔机水下布放性能开展仿真研究,分析了其水下布放关键性能与参数变化规律.
新型高压电-气伺服阀阀口气体射流数值研究
提出一种新型音圈马达直接驱动滑阀式单级高压电.气伺服阀,针对其工作特点及阀芯受力情况,研究高压气体流经伺服阀阀口时气体射流角。在高压电-气伺服阀中阀口上下游压力比达到临界状态时,高压气体流经较小阀口时流速可达到声速,此时高压、高速气流产生的稳态气动力不容忽视,成为影响音圈马达直接驱动滑阀式单级高压电。气伺服阀控制精度及响应特性的重要干扰力。基于气体射流理论采用计算流体动力学方法对高压电.气伺服阀内部流场进行数值模拟,分析不同阀口开度对应的射流角大小,得出高压电.气伺服阀在不同阀口开度时射流角有较大差异,小阀口开度时射流角大于69°,当阀口开度达到设计最大开度时射流角接近69°,但伺服阀在精密控制系统中主要工作在零位附近,此时阀口开度较小,因此不同开度对应稳态气动力均...