装配式电缆排管防护沟槽设计与试验研究
为提高电力电缆排管防护沟槽的装配化程度和便于局部更换,研发了预制装配式排管防护沟槽结构体系,开展了沟槽结构的参数化设计。选取典型结构构造形式,采用原型试验研究和有限元分析相结合的方法,分析了覆土厚度分别在1 m和3 m两种工况下,结构应力分布和位移变化规律。研究结果表明,覆土厚度对结构竖向位移、普通钢筋拉应力影响显著,覆土厚度为3 m时的结构竖向位移、普通钢筋拉应力值分别是覆土厚度为1 m时对应值的2.4倍和2.3倍。槽壁是结构主压应力的控制构件,底板是纵向拉应力和主拉应力的控制构件。底板主拉应力随覆土厚度增大而明
PET熔体齿轮泵转速的控制
介绍了在连续缩聚装置中熔体齿轮泵转速的2种不同控制方式流量控制和压力控制。详细阐述了流量控制和压力控制的影响因素、优缺点,并且提出了解决办法。
上驱动式剪叉液压升降平台的设计与实现
根据市场需求,设计了上驱动式剪叉液压升降平台。该升降平台采用上驱动式动力液压缸,单人操控满足单人高空作业需求,无需电源,轻巧便携,剪叉式结构存储不占空间,是日常生产生活中替代梯子进行高空作业的最佳选择。经样机试产后,各项性能均满足客户需求。
形态差值滤波及形态指数在液压泵滑靴磨损状态评估中的应用
针对液压泵滑靴磨损状态的评估问题,提出了一种基于形态差值滤波和形态指数(MI)的方法来有效地诊断滑靴磨损故障并评估其劣化程度。首先,利用形态差值滤波器对现场实测的正常状态和四种不同磨损程度的滑靴故障的振动信号进行滤波处理,提取出清晰的特征信息;其次,对滤波后的振动信号进行有量纲参数和无量纲参数的提取,其中有量纲参数包括首次引入到液压泵健康状态评估领域的MI;最后,通过分析MI对滑靴磨损故障及其劣化程度的敏感性和变化规律,得出MI可以有效地诊断出滑靴磨损故障及评估其劣化程度。
沉管水下液压定位机结构及液压系统设计研究
针对海底沉管隧道施工过程中,沉放区域的海浪及气象条件复杂,沉管沉放工作有空间性约束、沉管定位与调整难等工程难点问题,介绍了沉管体外定位系统这一新的施工工艺和工法,阐述了沉管定位机的工作原理及特点,并对其结构及液压控制系统进行了详细的分析。
液压缸内泄漏故障的敏感特征参数选择的实验研究
该研究旨在解决液压缸内泄漏故障诊断中敏感故障特征的选择问题。分析了液压缸内泄漏故障的机理,阐明了泄漏对液压缸工作腔动态压力的影响,提出了一种通过调节旁路节流阀的开口度模拟液压缸内泄漏的实验方法。实验结果分析表明,采用小波包分解对液压缸工作腔的压力信号进行分析,最终确定用压力信号的小波包最低子带能量、小波包子带能量熵和小波包子带能量方差作为液压缸内泄漏故障的敏感特征量。研究结果对液压缸的泄漏故障诊断及健康状态评估具有理论指导意义。
基于ReliefF算法和相关度计算结合的故障特征降维方法及其应用
在对旋转机械进行故障诊断时,通常要从时域、频域或时频域提取故障特征参数,组成原始的故障特征向量,然而在众多的故障特征当中并不是每个特征对于故障分类都是敏感且有效的。为此,本研究提出了基于ReliefF算法和相关度计算结合的故障特征降维方法。采用ReliefF加权特征选择算法对原始各特征的分类能力进行评价,选择出分类能力较强的特征;再通过特征相关度算法剔除其中分类能力相近的冗余特征,将剩余的分类能力较强的特征组成最终的降维特征向量用于故障分类和诊断,实现原始特征的降维。通过液压泵和滚动轴承的故障诊断实验,并与传统的主元分析(PCA)方法对比,结果表明该方法能够用较少的降维后的信号特征获得更高的故障正确识别率。
电液伺服系统非线性振动诱因探究
根据非线性动力学原理,建立电液伺服系统的非线性动力学模型,探索非线性弹簧力和非线性摩擦力等非线性因素对伺服系统运动特征的影响规律。通过理论研究,指出非线性弹簧力和非线性摩擦力的耦合作用特征可以用Duffing—VanDerPol方程描述。通过数值试验分析,发现系统外加激振力、阻尼系数和弹簧力非线性项系数的大小影响系统的运动状态,当三者参数变化时系统可能做极限环型振荡、倍周期运动和混沌运动。
基于VMD消噪处理的滚动轴承早期故障识别
提出了一种基于变分模态分解(VMD)消噪和核模糊C均值(KFCM)聚类相结合的滚动轴承早期故障识别方法。首先提出一种通过综合运用泄漏能量和互相关系数函数确定VMD预设尺度数K的新方法,弥补了VMD方法通常按经验选取预设尺度数方法的不足;然后对振动信号进行VMD分解得到K个限带的内禀模态函数(BIMF)分量,利用归一化的自相关系数函数能量集中比大于0.9的原则确定含有噪声的BIMF分量,并剔除这些含噪BIMF分量,再将剩余的BIMF分量叠加进行信号重构,实现了信号的消噪;最后计算各样本重构信号的均方根值和归一化能量值得到二维特征向量样本集,并输入到KFCM聚类器进行故障诊断。利用实测轴承故障数据进行验证,结果表明与经验模态分解(EMD)方法相比,可以有效地实现滚动轴承早期故障诊断。
液压系统主要故障分析与消除方法
一般情况下液压传动系统的工作是可靠的,但由于某种原因,也会使液压液压系统产生一些故障,如由于维护不当使液压元件损坏、失灵而引起故障,系统或元件的设计不合理、装配、高速不当而引起故障,有些故障则是因为年久失修、零件磨损、精度超差所致,也有些是系统中各液压元件的综合因素所造成的。