大面积MCP选通X射线分幅相机的研制
研制大面积微通道板(microchannel plate,MCP)选通X射线皮秒分幅相机.MCP外径为106mm.微带阴极宽度为12mm.测量微带阴极的时域反射曲线,得到微带阴极的特性阻抗约为11Ω,相机的时间记录长度约3ns.对分幅相机进行联调实验,测得其时间分辨率为62ps,空间分辨率为18.87lp/mm.
门控分幅相机增益均匀性优化设计
利用宽度渐变微带线进行了门控分幅相机增益不均匀性修正技术研究。建立了渐变微带线修正的物理模型,通过特性阻抗调配补偿幅度衰减,设计了特种渐变微带线参数。比较了特种曲线渐变微带线与传统直线渐变微带线的修正效果。在0~4GHz带宽范围内,特种曲线渐变微带补偿后,电压幅度不一致性由15.0%降低至1.6%,增益不一致性由70%降低到8%。对于当前使用的分幅相机,微带线宽度由6.00mm渐变到4.45mm就能有效地降低门控分幅相机增益的不一致性。
软X光多层镜反射率的标定与修正
在北京同步辐射装置上,利用3W1B柬线得到了21°-B4C/Si,21°-B4C/Mo,10°-Cr/Ti,15°-B4C/w,10°-B4C/W以及6.86°-B4C/w等多层镜在50~1500eV能段上的反射率标定曲线.分析了标定结果的不确定度,计算得到多层镜的积分衍射效率,并修正了标定结果.
X射线分幅相机电脉冲时标方法研究
在神光Ⅱ装置上,利用选通脉冲与激光脉冲在示波器上的时间关联建立了一套X射线分幅相机的时间定标方法.以激光打靶的第一分幅像为定标点,由对应的电脉冲关系得到定时的基准.采用四路260J、1ns、0.35μm的激光打击镀金球靶的分幅照相,确定了X射线发射在MCP微带线上的基准点,时标准确度为50ps.在惯性约束聚变背光照相实验中,该时标系统得到成功应用.
KBA-X射线显微镜空间分辨力模拟和Au网格实验测量
通过光线追踪模拟在SGⅡ激光装置上利用第9路激光入射到Cu背光靶面产生X射线,通过Au网格背光照相,利用KBA显微镜对此网格成像,获得了清晰的网格图像。通过对实验网格数据的分析发现:在掠射角减小的方向,空间分辨力随视场的变化比掠射角增大的方向变化小,与光线追踪模拟比较,二者均表明KBA的视场是非对称的,从实验图像数据得出,视场的不对称相对于中心位置约为30%。
成像型速度干涉仪
介绍了应用于超高压条件下的成像型速度干涉仪技术的光路结构和基本原理,该技术在传统速度干涉仪技术的基础上进行了改进,将收光部分改为成像系统,记录系统使用条纹相机,从而能够诊断高速冲击波信号。给出了全系统的光路图,提出了各分系统的参数要求。针对系统硬件,给出了探针光源、成像系统的基本参数,给出了三点支撑干涉仪的设计图,分析了记录系统的基本参数。对于静态实验,拍摄了静态靶的照片,并对静态靶照片进行了初步的分析:发现可以通过条纹对比度的变化初步判断像与靶的对应程度。
固定角度平面镜标定方法与不确定度分析
在北京同步辐射装置新建4B7B束线没有安装反射率计,且用户空间有限的情况下,利用X光基准点还原的方法建立了一种Dante谱仪固定角度平面镜反射率标定方法。利用三光束瞄准方法完成了束线软X光基准重建,通过准直方法实现了平面镜与X光之间的高定角精度,并采取了相应的角度姿态监测,最终在实验中得到的平面镜标定角不确定度为1.0 mrad。基于固定角度平面镜多次安装和朝各个方向转动后的标定结果,获得了高精度的反射率曲线。
一种条纹变像管静态电子光学聚焦特性数值模拟
对ICF实验中条纹相机的重要组件变像管的工作过程进行了介绍,建立了其内部电子光学系统模型,对其静态电子光学特性进行了数值模拟。模拟软件采用ANSYS,数值计算基于有限元数值计算方法,并利用哈密顿原理求解泛函,在控制计算精度的基础上,得出了该电子光学系统的内部静电场分布和轴上电位分布,同时对静态条件下的电子轨迹进行了模拟计算。结果显示了与理论解析结果很好的相似性,同时初步探索了电极尺寸及电压参数对成像的影响。结果表明,电压参数的改变对光电子成像的影响要更大一些。
X光分幅相机在黑腔等离子体填充特性研究中的应用
在神光Ⅱ装置上2.4ns长脉冲三倍频激光(激光能量8×300J)与腔靶耦合实验研究中.X光分幅相机通过激光注入孔观测获得了3种腔尺寸腔内Au等离子体径向运动时空分辨图像。用MATLAB对图像进行了定量处理,结合时间分辨辐射温度测量结果分析表明:在腔内不充气、无低Z衬垫情况下,标准腔(φ800μm×1350μm)在激光脉冲作用到约1.5ns时出现明显的Au等离子体堵腔效应;当腔尺寸放大到1.25倍(φ1000μm×1800μm)和1.5倍(φ1200μm×2100μm)时,腔内等离子体基本不堵腔。给出了3种腔尺寸不同时期腔内AU等离子体径向聚心速度,分析表明:大腔的聚心速度比小腔的慢,后期比初期慢。
门控分幅相机增益衰减特性
分析了分幅相机增益衰减的理论模型,利用Mathematica软件模拟了增益随电脉冲传输时间指数衰减的曲线图。根据增益衰减理论,设计了测量增益衰减系数的实验。实验结果表明:分幅相机的平均增益按0.0249mm^-1指数衰减,电脉冲沿微带线传输的电压幅值衰减系数平均为0.00356mm^-1.得出实验数据中单条微带上增益并不完全符合增益指数衰减规律,而是在最后一帧图的增益有所回升,分析得出这是由电脉冲在微带末端连接处的反射引起的。经多次测量,电脉冲在微带线末端的平均值反射比为24.2%。对增益衰减状况的改善提出建议:采用良导体制作传输线,选取介质损耗小和绝缘性能好的材料作为填充介质,合理设计MCP微带线的厚度、微带宽度及微带与输出面的间距则可减小分幅相机增益的衰减。