跨声速风扇转子叶尖小翼设计与扩稳机理研究
为了揭示叶尖小翼对跨声速风扇转子气动性能的影响机理,采用数值模拟方法研究了跨声速风扇转子NASA Rotor 67附加不同叶尖小翼的气动特性,并在分析不同叶顶间隙时风扇转子失稳机制的基础上探究了叶尖小翼的扩稳机理。研究结果表明:最大宽度的压力面小翼在小间隙、设计间隙和大间隙情况下分别使风扇转子失速裕度提高32%,33.6%和70.6%。小间隙时,转子叶尖泄漏涡和叶片吸力面附面层分离是影响风扇转子失稳的关键因素,设计间隙和大间隙时,叶尖泄漏涡导致的大面积阻塞区是影响风扇转子失稳的关键。三种不同叶顶间隙情况下,压力面小翼的扩稳机制均在于有效降低了转子叶尖泄漏涡强度,减弱了叶尖泄漏涡导致的低轴向速度区流体的阻塞程度。
低雷诺数下高亚声速压气机叶型流动损失机理研究
以高亚声速压气机叶型为研究对象,利用数值模拟手段研究了不同雷诺数Re条件下叶片近壁面分离泡结构和边界层发展的内在关联,基于Denton损失模型,揭示了低Re下压气机叶型性能退化内因;在此基础上,通过叶型改型设计,获得两种不同载荷分布的新叶型,对比分析了载荷分布对分离泡结构和叶型流动损失的影响。结果表明,Re从1.2×10^6降低到1.5×10^5时,吸力面分离泡长度增加11.2%轴向弦长,此时叶型边界层损失略有增加,而叶型尾迹损失增加接近150%,分离泡强烈的"位移效应"导致尾迹损失急剧增加是低Re下压气机叶型性能退化的主要原因;采用前加载叶型能够促使转捩提前发生,同时降低流向逆压梯度,有效抑制分离泡的形成和发展,改善低Re条件下高亚声速压气机叶型的气动性能。
整体弹性结构法及在叶片流固耦合分析中的应用
针对三维叶片时域流固耦合振动响应计算普遍耗时的问题,采用一种假设整体结构的模态位移,求解固体时域响应和实现高效网格变形,发展了一种3维时域流固耦合分析的整体弹性结构方法,并应用于压气机叶片0°和180°相位角的气动稳定性分析中。结果表明,所发展方法的计算结果与传统双向时域算法和文献的结果较为吻合,而计算效率相比于传统算法显著提升;在所分析的两个相位角下,叶片振动的气动阻尼均随流量减小先增大后降低,相比于0°相位角,180°下叶片的气动稳定性大幅提高,表明该方法能有效应用于叶片的工程流固耦合研究。
压气机转子叶片的抑颤设计
为了建立适用于工程设计的叶片抑颤方法,以一高压压气机转子叶片为对象开展了叶片颤振特性与其结构参数的关联性研究。采用基于相位延迟边界条件的能量法和特征值法对原转子叶片模型的气动弹性稳定性进行评估,通过分析近失速工况下的非定常气动功密度分布,对叶片安装角沿径向分布、弦长和叶尖间隙等设计参数进行调整,以明确各参数对气动弹性稳定性的影响,最终达到提高气动阻尼的目的。研究结果表明:叶尖间隙对气动阻尼的影响较大,安装角次之,弦长影响相对较小。叶片气动阻尼随叶尖间隙的变化并非单调,而是存在一个叶尖间隙使其气动阻尼最小,即叶片气动弹性稳定性最差。减小进口气流攻角和增加折合频率,能够提高气动阻尼,设计中可以通过调节安装角来减小气流攻角,增加弦长来增大折合频率。考虑到对叶片气动性能的影响,在调节...
唇罩内型面对内转式进气道流动特性影响研究
内转式进气道流场参数分布不均,为改善进气道的流场结构、提高其气动性能,采用数值仿真方法开展了唇罩内型面对内转式进气道流动特性影响的研究。研究结果表明:唇罩内型面影响唇罩激波强度、形态与内流道波系结构,进而影响唇罩激波与侧壁边界层干扰诱发的三维流向涡的产生、发展以及空间分布;在研究范围内,随着唇罩压缩角减小,唇罩激波减弱,内转式进气道流场参数周向分布更加均匀,出口总压恢复系数先增大后减小,抗反压能力不断增强,最高增大了12.7%。
基于最佳环量分布的螺旋桨滑流影响预测
为了更加快速且准确地预测螺旋桨滑流对机翼气动系数的影响,提出了基于最佳环量分布并结合激励盘数值模拟技术实现螺旋桨滑流影响预测的方法,选择Prandtl最佳环量分布解析法并在此基础上提出了一种桨毂修正办法,从而得到桨盘的最佳环量分布解析式。将采用不同方法计算螺旋桨压力阶跃分布作为激励盘模型的边界条件,采用CFD数值模拟得到了一种典型的桨-翼组合体的气动参数。结果表明,本文提出的修正方法预测结果更接近于试验数据,升力系数的相对误差不超过3%,阻力系数的相对误差不超过20%。这种方法具有不依赖试验数据、低计算资源消耗的优势,对飞机概念设计初期快速确定螺旋桨滑流对机翼气动系数的影响方面具有优势。
大子午扩张涡轮扇形叶栅变工况性能实验研究
为了研究大子午扩张低压涡轮变工况下的流动性能,分别对大子午扩张低压涡轮的两套不同的扇形叶栅进行气动实验研究。在设计进口气流角条件下,分别进行不同高亚声速马赫数出口变工况实验研究;在出口马赫数不变的条件下,完成变攻角实验。分析了大子午叶栅流动损失特点和二次流的影响规律。结果表明:大子午扩张实验叶栅出口存在两个明显的高损失通道涡,上通道涡位于展向1/3位置,远离上端壁,且强度明显大于下通道涡。随着马赫数增加,叶栅出口流动损失增加了15%。大子午扩张涡轮端壁曲率影响近端壁叶片的压强分布和变工况敏感性,优化端壁曲率将有助于流动状态的改善。
非轴对称端壁造型对叶片端壁气热性能影响的研究
为了研究非轴对称端壁造型对典型燃气透平叶片端壁气动热力性能的影响,基于双控制型线非轴对称端壁造型方法,建立了间隙射流和主流掺混作用下非轴对称端壁气动热力性能的数值研究模型。在数值验证的基础上,研究了4种不同非轴对称端壁造型几何结构对叶栅端壁流动特性和气膜冷却性能的影响规律。结果表明,针对本文研究的大转折角透平叶片,在叶栅通道前部进行非轴对称端壁造型,会增强端壁的横向二次流,导致叶栅总压损失系数略有增大,会降低端壁的气膜有效度。而在叶栅通道后部进行非轴对称端壁造型,可以有效削弱端壁的横向二次流,减弱通道涡,从而降低叶栅的总压损失系数,同时,能够提升端壁横向平均气膜有效度高达22%,有利于提高端壁的气动热力性能。
考虑飞行器动力系统进排气效应的设计参数灵敏度分析研究
面向飞行器内外流一体化设计,基于自主研发的大规模并行化结构化网格RANS求解器以及离散伴随方程求解器,开展了考虑推进系统动力状态下进排气边界条件的变分研究,通过链式求导法则避免直接对守恒变量变分,进一步引入中间变量大幅度简化了进排气边界条件变分的难度,建立了考虑进排气效应的设计变量灵敏度高效分析方法,并通过TPS标准模型计算验证了进排气数值模拟精度,与有限差分对比验证了灵敏度计算精度,以翼上发动机气动布局进排气影响数值模拟为例,系统分析了低速、高速、定攻角、定升力状态,推进系统有无动力工况灵敏度的变化以及影响机理。
基于机载模型的轴向柱塞泵动态特性参数辨识及影响分析
针对航空发动机柱塞泵动态特性解析模型复杂、阶次高、计算资源需求大、参数多且难以准确确定的问题,在忽略解析模型高阶特性得出简化的机载模型基础上,提出了基于典型环节特征参数的时域阶跃响应辨识方法,得到柱塞泵的动态参数。仿真分析和试验结果表明,简化模型精度可达95%,计算资源需求少,为柱塞泵机载模型应用奠定了基础。同时,基于动态模型分析了柱塞泵动态响应对伺服控制动态响应的影响,柱塞泵动态特性应在伺服回路动态特性4倍以上,国军标中规定的柱塞泵动态特性要求可满足航空发动机喷口控制要求。