面向空间细胞培养用多路切换陶瓷阀仿真优化研究
为了满足空间站环境细胞长期自动培养的需求,研制一款新型细胞自动培养装置,装置由微量泵、多路切换阀等组成。通过设计一款多路切换陶瓷阀,实现仅由一组泵阀自由切换多条液路。通过有限元仿真分析培养液、消化液和裂解液3种液体在多路切换阀内的压力、温度、流速等物理参数分布情况,确定最佳阀位布局,并优化阀体结构,以改善不同液体流入阀腔后分布均匀性。优化后多路切换阀内细胞培养液和消化液的压力和温度分布波动率均小于1%,流速稳定。裂解液温度分布变化在优化前为2℃,优化后小于0.01℃。液体流动更加顺畅,滞留现象减少。仿真结果表明优化后的陶瓷阀有助于提升空间细胞培养的稳定性和经济性。
类X-43A高超声速飞行器机体/推进一体化气动设计分析和地面试验问题评述
吸气式推进能够为高超声速飞行提供显著效益,并能极大地改进其飞行性能。对于在大气层中做持续巡航飞行的全球到达高超声速飞行器,吸气式发动机是其重要的组成部分。将高超声速推进发动机与机体完全结合成一体可大幅改善飞行器性能,但这种一体化气动布局构型对高超声速飞行器设计是重大挑战。传统地面风洞试验、理论分析、计算和飞行试验等飞行系统开发工具都存在局限性。基于此,为提供一种可靠设计方法,从吸气式高超声速飞行器设计、机体/发动机一体化系统与机体气动力干扰、吸气式高超声速飞行器试验要求与地面设备能力及增量方法论等方面对国内外吸气式高超声速飞行器研制进行分析评述,以期为吸气式高超声速飞行器的具体工程实施提供技术参考。
航天器再入陨落解体模型及分析预报策略研究
针对非常规再入问题,以航天器再入陨落解体分析预报为研究内容,对其物形架构构建了系统/子系统、部件、碎片/微粒的三层级模型,用于涵盖航天器解体研究对象的结构组成及碎片的各种几何特征,这些几何特征能够反映研究对象的气动力/热及飞行运动特性,在不同解体情况下具有普遍适应性。针对航天器再入陨落解体分析预报的技术途径,提出了基于条件边界的参数统计方法的基本策略,给出了航天器再入陨落时的气动力/热、飞行运动、解体、残骸碎片存活可能性、落区及地面风险等工程问题的评估解决策略。最后通过据此开发的软件系统进行了一例大型航天器再入陨落解体过程分析预报,结果表明了模型及方法的适用性。
大型航天器离轨再入气动融合结构变形失效解体落区数值预报与应用
准确可靠求解大型航天器服役期满离轨再入跨流域气动环境与金属(合金)桁架结构变形失效解体非线性力学行为,是解决航天器失联无控或受控再入坠毁飞行航迹落区数值预报软件研制的关键基础。在求解Boltzmann模型方程的气体动理论统一算法(GKUA)基础上,采用转动惯量描述气体分子自旋运动,利用分子总角动量守恒作为一个新的碰撞不变量,引入能量模式配分函数和非弹性碰撞松弛数,确立了描述复杂飞行器跨流域高超声速流动非平衡输运现象统一Boltzmann模型方程,构造了直接捕捉Boltzmann模型速度分布函数演化更新数值格式,提出了离散速度空间区域分解大规模并行计算策略与高效数据通信模型,建立了稳定运行数万CPU核求解大型航天器离轨再入跨流域气动力/热环境高性能并行算法。针对无控航天器非常规再入问题,提出瞬态热传导方程与材料热弹性动力学...
大型航天器再入解体气动力热特性模拟的直接模拟蒙特卡洛方法研究
为模拟大型航天器离轨再入近连续过渡流区高超声速气动力/热绕流特征,构建了基于直接模拟蒙特卡洛法碰撞限制器技术的混合方法,发展了基于密度梯度的动态自适应混合网格处理技术与变时间步长计算方案。利用当地流动梯度的克努森数作为判断连续流失效的参数,将流场划分为不同区域,在连续流区采用碰撞限制器以及大网格尺度和大时间步长,在流场的大梯度区域——包括激波和壁面边界层区域——采用基于当地密度梯度的动态自适应碰撞网格和取样网格处理技术。为保证整个流场范围每个碰撞网格内的模拟粒子数分布更加均匀,采用变时间步长计算方案,并固定当地时间步长与粒子权重的比值,避免了因分子穿越网格界面产生的复制或消失。通过计算类天宫飞行器低密度风洞试验状态的气动力系数,并与试验数据对比,验证了上述算法的高精度模拟...
再入气动环境类电池帆板材料微观响应变形行为分子动力学模拟研究
针对服役期满大型航天器无控飞行轨道衰降再入大气层解体过程及落区难以提前预测,再入解体后生成的碎片可能造成地面危害等问题,采用分子动力学模拟方法,选取MEAM势函数,构建了碳元素质量分数0.215%的含碳钢分子动力学模型,计算了不同温度下材料的平衡态晶格常数,并通过晶格常数与温度的关系,计算了模型的线膨胀系数,验证了MEAM势函数在所建立的仿真模拟系统合理性;使用经过验证的分子动力学模型与MEAM势函数,模拟了钢制平板在Ma∞=8.37,Kn∞=0.01,γ=1.4的高超声速再入气动环境中,通过结构动态热力响应变形行为有限元算法计算出的部分状态下材料微观演化行为,初步证明了分子动力学模拟方法在服役期满大型航天器再入大气层解体过程的分析仿真计算中的作用,为实现分子动力学方法同动态热力响应有限元算法的耦合奠定了基础。
密封舱结构材料5B70铝合金高温压缩实验与晶体塑性模拟研究
为探究5B70铝合金高温变形行为,利用Gleeble-1500模拟实验机在不同参数下对该合金进行了热压缩实验,通过ABAQUS有限元分析软件在介观维度建立了5B70铝合金Taylor模型并进行了热压缩模拟,阐述了该合金热变形过程中的组织演变及位错密度分布规律。结果表明:在高温条件下试样的形变是由硬化作用和软化作用共同影响的;多晶体内部分为硬晶粒和软晶粒,在热压缩时硬晶粒的应力较小,但内部位错密度较大,而软晶粒的应力较大,但内部位错密度较小;当温度一定时,5B70铝合金的流动应力随着应变速率的增大而增大,应变速率一定时,该应力随着温度的升高而减小;晶体塑性模拟能够准确地反映5B70铝合金热压缩时的加工硬化及动态软化作用,解释了微观结构变形机理。
载人充气密封舱飞行试验方案研究
针对未来空间站扩展舱体和月球基地建造对大型密封舱的需求,分析中国空间站平台资源和充气密封舱的技术特点,提出了载人充气密封舱系统设计方案。分别研制了3种不同功能和构型的充气密封舱,基于货运飞船分步骤上行进行飞行试验验证。各飞行方案既相互独立又逐步递进,技术风险低,不会影响空间站主任务开展。利用ABAQUS软件对充气密封舱进行仿真,结果表明:折叠状态下的充气密封舱刚度和强度可满足飞行器上行要求,在轨充气展开后,舱体结构基频随充气压力上升而增大,柔性结构强度可承受在轨内外压差。
基于元胞自动机的5B70铝合金载人密封舱室加强筋组织演化研究
针对5B70铝合金密封舱体加强筋的微观组织演变问题,基于元胞自动机理论,引入拓扑算法,建立晶粒形核、长大和再结晶模型,研究了单道次微铸锻工序中加强筋的微观组织演变过程,分析了应变量对动态再结晶与静态再结晶晶粒尺寸及体积分数的影响。结果表明:最佳微锻应变量为0.3;在微锻过程中由于塑性变形温度过低,动态再结晶体积分数最大仅为35%,在下一道次的微铸阶段,该组织发生完全静态再结晶,晶粒均匀细小,约为30μm。
磁性液体阻尼减振器的设计与试验研究
提出了一种基于二阶浮力原理的磁性液体阻尼减振器设计方法。通过选择磁性液体种类、永久磁铁材料和形状以及减振器壳体材料和外形,设计制造了磁性液体阻尼减振器,并进行了减振试验。试验重点研究了减振器端盖锥角及减振器内永久磁铁与壳体的间隙对减振器减振性能的影响。通过试验分析得知端盖锥角以及永久磁铁与壳体间隙都存在最佳值使得减振器减振性能最优。