基于NX6.0高速加工方式的应用
高速加工能够缩短零件的生产工艺过程,增加材料的切除率,提高零件表面的加工精度。在NX6.0 CAM模块支持高速切削技术,当设定合适的加工策略,就能够得到光滑、平顺、稳定的刀位轨迹。本文以实例详细地讲述NX CAM在高速加工中的应用策略。
航空复杂模锻件的高速加工技术
在对航空复杂模锻零件的典型结构进行工艺分析的基础上,通过加工方案论证,全面阐述了采用高效加工的实施过程,从而探索出一条适合航空复杂模锻件的高效加工方法.这也为今后类似复杂模锻件的加工提供了参考.
基于PowerMILL软件的加工参数对高速加工的影响
简要分析了基于PowerMILL软件中CAM设计对高速加工的影响,分别从加工模型、加工参数以及加工方式3方面具体分析,找出影响高速加工质量的因素.通过本次课题的研究和论述,希望在今后的工作中提高高速加工精度及品质,从而使我公司的模具加工上升到一个新的台阶.
基于UG8.0软件在高速数控加工中的应用
介绍了应用UG8.0软件对模具进行工艺分析、数控编程、仿真加工和后处理加工。同时分析了数控编程过程中对加工参数的设置和加工策略的选择,解决了模具细小部位的加工,减少了放电加工,大大提高了模具的生产效率和尺寸精度。
数控机床高速高加速进给下的跟随误差控制策略
针对数控机床在高速加工中,各进给轴的进给速度和进给加速度高、跟随误差难以控制、零件加工精度无法保证的问题,提出一种模态滤波器与零相差跟踪控制器的综合控制策略。首先通过零极点对消的原理,得到设置在速度环内的模态滤波器,对滚珠丝杠进给系统的一阶和二阶扭转振动模态进行抵消,消除这两阶模态对伺服带宽的限制以继续提高伺服带宽;然后通过对整个伺服进给系统的传递函数近似取逆,得到设置在位置环之前的零相差跟踪控制器,改善伺服进给系统的相位滞后,最终实现数控机床高速高加速进给下的跟随误差控制。仿真结果表明,当进给速度为30 m/min、加速度为10 m/s^2时,与传统的PID控制策略相比,所提出的综合控制策略将跟随误差降低到原来的0.1%以下。
高速液压夹头结构的优化设计
高速夹头是高速加工工具系统的重要组成部分被广泛用于中轻加工载荷的高速加工其性能直接影响高档数控机床的性能及加工质量。通过高速液压夹头/刀具模型有限元分析发现:夹头/刀具接触应力分布不均夹头油腔转角过渡区域应力集中。本研究对油腔转角区域采用单元弧过渡形线基于结构优化设计理论和优化方法利用Ansys优化分析模块对夹头/刀具模型进行优化。结果表明:结构优化改善了夹头/刀具接触应力分布降低了夹头液压腔转角过渡区域应力集中和减小了接触压力峰值提高了高速液压夹头的可靠性和稳定性。