液压机械无级传动换段过程液压回路动态特性仿真研究
为了研究液压机械无级传动换段过程中液压回路的动态特性,采用仿真软件EASY5建立液压机械无级传动液压回路的仿真模型,分析管道长度、管道直径以及油液容积在换段过程中对液压油路的压力响应、扭矩变化以及液压元件转速变化的影响。结果表明减小管道长度、管道半径和油液容积可以有效减小液压元件在扭矩反向时的转速波动和压力冲击,提高系统的动态特性。
两段式液压机械无级传动机构运动特性研究
两段式液压机械无级传动能够实现大传动比、宽传动范围的无级变速,并且可以降低液压元件的额定功率,提高全程的传动效率。该传动机构的运动特性关系着整车工作模式的设定及其性能的发挥。分析了液压机械无级传动机构分矩汇速型、分速汇速型和分速汇矩型三种类型的分汇流形式。利用杠杆法分析了外力构件位置对机械点分布、液压元件正反相位和功率流类型的影响,获得了两段式液压机械无级传动机构的可行分汇流形式。总结了各个段内液压元件转速与输出转速的关系,并基于无速差换段理论对段间输出转速的衔接规律进行了研究。通过液压元件正反相位的往返变化,实现了两段式液压机械无级传动输出转速的连续无级变化。搭建了采用分矩汇速+分矩汇速型液压机械无极变速器的ZL50型装载机的仿真平台,进行装载机在典型V循环工况下运动特性...
发动机与静液压传动的匹配与仿真
针对液压机械无级传动进行分析,建立其数学模型,并通过MATLAB/Simulink建立泵控马达和发动机系统的仿真模型,研究泵控马达和发动机的匹配关系。同时,在传统的PID控制的基础上,采用粒子群算法对控制器的PID参数进行优化整定。结果显示:液压机械无级变速器的系统性能得到明显改善,提高了动力系统的燃油经济性和动力性。
提高液压机械无级传动换段品质的方法
根据液压机械无级传动的控制原理,建立了其控制模型,分别采用PID控制算法及模糊控制算法进行了试验研究.试验结果表明,在工况转换过程中,采用机械操纵的液压机械无级传动样机,其输出转速的变化率达17.0%;而采用PID算法的电控器控制时,其变化率仅为2.0%;采用模糊控制算法的电控器控制时,其变化率仅为1.5%.采用电控系统的液压机械无级传动是改善换段品质的一个有效途径.
两段液压机械无级传动排量控制策略
在MSC.Easy5中建立了液压机械无级传动系统及排量控制机构的仿真模型,进行了仿真分析。变排量液压元件的排量控制机构存在死区和滞后,节流孔直径越小,死区和滞后越明显。采用阶跃控制电流的方法能有效消除零点处的死区;改变排量控制电流策略可以有效改善液压机械无级传动换段过程的动力学性能,使换段过程中输出转速差、换段时间明显减小,是一种有效的换段过程控制策略。
基于EASY5的液压机械无级传动排量控制机构仿真分析
液压流传动机构对排量控制电流信号的响应特性在液压机械无级传动速比调节过程中极为重要,采用目前先进的仿真软件EASY5分析了排量控制机构对控制电流的响应特性。分析结果表明排量控制机构对控制电流的响应存在明显的死区和迟滞效应,节流孔直径对其响应特性有很大影响。在适当的范围内采用较大直径的节流孔和改变控制策略能有效减小死区和迟滞。这一结果对分析液压机械动态特性,优化系统有着重要的意义。
液压机械无级传动系统储能技术研究
液压机械无级传动是一种多功率流无级传动系统,具有无级调速、高效率的特性,是大功率车辆较理想的传动形式。本文设计了一种新型的等比式液压机械无级变速器,对其无级调速特性进行了分析。并对多段液压机械储能技术进行了理论分析,为储能式多段液压机械传动系统的工程应用提供了重要的理论参考。
液压机械传动系统双流工况动态特性研究
研究液压机械传动系统的动态性能.根据功率键合图规则,建立二段式液压机械双流无级传动装置双流传动工况的键合图模型,并以惯性元的广义动量和容性元的广义位移作为状态变量,推导出系统的状态方程.根据键合图模型,分析了该无级传动系统的动态响应特性,分别得到负载、输入转速和斜盘摆角变化时,系统输出转速和系统主油压的响应曲线,同时分析了液容变化对系统响应速度的影响.分析结果表明,该系统动态响应达到稳定的时间为0.5s,当液容增大时,达到稳定的时间将延长。
液压机械无级传动的自动控制研究
为了探索液压机械无级传动实现自动控制的可行性建立了液压机械无级变速器的单参数刚性控制结构的模型研制了液压机械无级传动自动控制器及相应的控制软件通过台架试验验证了控制单元采用增量式PID控制算法的可行性并获得了一套可行的PID控制整定参数从而成功地实现了液压机械无级传动的自动控制.
液压机械无级传动换段过程液压回路动态特性仿真研究
为了研究液压机械无级传动换段过程中液压回路的动态特性,采用仿真软件EASY5建立液压机械无级传动液压回路的仿真模型,分析管道长度、管道直径以及油液容积在换段过程中对液压油路的压力响应、扭矩变化以及液压元件转速变化的影响。结果表明:减小管道长度、管道半径和油液容积可以有效减小液压元件在扭矩反向时的转速波动和压力冲击,提高系统的动态特性。