齿轮泵无径向力新结构的研究与分析
为消除径向力对齿轮泵造成的极大危害,提出一款双静压平衡槽+牙形卸荷槽的无径向力方案和实施结构。首先,由压啮力的大小和方向计算,得出双静压平衡槽的形位尺寸;其次,由卸荷槽的设计准则,确定出牙形卸荷槽的形位尺寸;最后,实施卸荷面积的虚拟实测及困油压力的动态仿真。结果表明该结构确能实现无径向力和近似无困油力的创新目的。
航天超低黏度齿轮微泵困油下的流量脉动研究
为实现航天超低黏度齿轮微泵困油下无级调速的高使役性能,依序从齿轮微泵的困油啮合过程、瞬时流量及卸荷流量的3个方面,逐步建立出对应的流量均值和脉动系数式,并就困油压力和齿形参数对流量均值和脉动系数的影响,进行实例分析。结果表明:双卸荷槽对称布置下,单纯通过增加卸荷面积来缓解困油压力,对流量脉动的品质几乎无影响;轴向缝隙是影响困油压力和流量脉动的最大因素;轴向的阶梯缝隙能满足困油卸荷与降低轴向泄漏的不同需求。齿形参数的影响各异,尤其小模数与大齿数的组合能实现均值提高与脉动改善的双重目的。研究成果为高品质齿轮微泵的进一步研究与开发,提供一定的理论依据。
梯形卸荷槽对外啮合齿轮泵困油压力与流量脉动影响的研究 1
为减小“困油”所引起的压力冲击与流量脉动,基于双斜型卸荷槽、根据齿轮的啮合特点以及啮合过程中困油腔容积的变化规律,对原耳形卸荷槽进行优化,设计了一种具有更大卸荷面积、结构更加紧凑且易加工的梯形卸荷槽。在数值模拟过程中,分别监测耳形、梯形卸荷槽所在的齿轮泵流场困油区压力与出油口流量变化情况。结果表明:当转速在1000~4000 r/min内变化时,梯形卸荷槽能使困油容积区域压力峰值比耳形卸荷槽分别降低36.3%~47.5%,10.7%~22.5%;能使出油口流量脉动系数降低20%~86.1%。证明了梯形卸荷槽降低困油压力缓解困油现象的高效性与降低泵出油口流量脉动的有效性,为渐开线外啮合齿轮泵卸荷槽的创新设计提供了一种新的途径。
考虑困油和卸荷的外啮合齿轮泵动态转矩计算
为研究困油压力及异、同齿数对外啮合齿轮泵转矩影响,从分析直齿轮传动与卸荷槽的几何关系入手,将啮合齿面分成八点、三区、七过程。以主动齿轮的啮合半径为变量,建立出一个啮合周期内转矩的静态和动态计算式,并以实例加以分析比较。结果表明:转矩的波动及其最大峰值随困油压力的增加而加大,但最小峰值基本保持不变,同齿数的转矩品质要优于异齿数,以及转矩的静态计算误差较大等;困油压力对转矩的影响很大,设计上应尽量克服之,异齿数对泵各项性能的影响是相异的,不能一概而论。
中高压外啮合齿轮泵端面间隙的理论计算
在浮动轴套(侧板)受力分析的基础上,通过其内侧油膜挤压力、困油力、工作油压力和其外侧补偿力等的计算,构建出浮动轴套(侧板)轴向的动力学模型.利用龙格一库塔法在一个啮合周期内的迭代运算,获得端面间隙的动态仿真结果,并就压紧力系数、工作油压的不同分布和困油压力对端面间隙的影响进行分析.结果表明:案例工况参数下的端面间隙值一般在0.13mm左右,与实际情况比较吻合;同一压紧系数下浮动侧板内侧因工作油压的不同分布所引起的总油压力越大,端面间隙则越小;在其他条件不变的情况下,压紧系数越大,端面间隙越小;油压的不同分布、压紧系数的大小对端面间隙具有明显的影响,而困油压力的影响较小;总体而言,中、高压外啮合齿轮泵的端面间隙实际上波动较小,可采用动态端面间隙的均值以简化后续计算.
振动影响齿轮泵困油压力的仿真与理论分析
为探讨外啮合齿轮泵的齿轮副振动对两困油区内困油压力仿真结果的影响,由困油的体积弹性模量定义建立出有关困油压力的仿真模型,并就有、无振动的两种情况,通过两困油区内来自困油的各种泄漏量的量值比较,分别对2个困油区内困油压力值的大小进行了理论分析,且佐以仿真运算和试验验证。结果表明,第2困油区内的压力峰值大于第1困油区内的压力峰值,振动下的峰值差距较无振动时为小;出口压力越高,峰值差距越大;振动下的仿真结果较无振动时精度更高,例第6组的仿真误差由16.7%改善到7.8%;在困油压力的仿真中,有必要考虑齿轮副的振动因素等,动态困油模型可为泵后续的进一步设计提供理论支持。
齿轮泵最大困油压力解析式的建立与验证
为探求建立出能够计算齿轮泵最大困油压力的解析式以克服试验和仿真上的局限性,针对困油过程的压缩阶段,分有、无侧隙的2种情况,该文采用细长孔的流量公式计算出侧隙内的压差泄漏量,并在困油轴向泄漏路径适当简化的基础上,计算出困油的轴向泄漏量。然后由困油区内"困油容积对时间的变化率等于泄漏量"所处的瞬态位置计算出最大困油压力,其正确性采用现有文献的试验结果来验证。结果表明,在案例参数下,当侧隙由30μm变化到200μm,最大困油压力位置与卸荷槽关闭点所在位置的偏离率由18.2%下降到3.5%,说明侧隙越大,最大困油压力所处位置越接近于卸荷槽关闭点所在位置;侧隙内的卷吸流数量级为6,压差流数量级为4,卷吸流可以忽略不计;最大困油压力发生在理论卸荷槽所在位置和实际卸荷槽所在位置之间,大小受出口压力和转速共同的线性影响,采...
困油压力对齿轮泵流量脉动的影响分析
为考量困油压力对外啮合齿轮泵流量脉动的影响,以无侧隙和对称双矩形卸荷槽为例,基于泵排油区域封闭容积的精确计算,并结合困油压力的仿真与验证,给出了理想与实际两状态下瞬时流量的计算公式,并分析了流量脉动所涉及到的相关性能指标。结果表明,相对于无卸荷槽情况,理想状态下的卸荷槽能够极大地改善泵的流量脉动,案例参数下的平均流量提高了12.34%;流量不均匀系数降低了85.09%;在考虑困油以及相关泄漏量的情况下,有卸荷槽的流量脉动品质虽然比理想状态下有所下降,但仍比无卸荷槽时有很大的改善,案例参数下的平均流量提高了6.73%;流量不均匀系数降低了73.90%;高速时虽然存在较大的困油压力,但该压力却有利于流量脉动的改善,案例参数下的困油压力峰值虽高达9.7 MPa,但流量不均匀系数却降低了87.61%等。因此在流量脉动的计算中考虑困油因素...
泵用双斜型卸荷槽及困油性能分析
为满足渐开线外啮合齿轮泵困油卸荷之需要,提出了一种具有更大卸荷面积、易加工的双斜型卸荷槽。基于常用的矩形卸荷槽,针对双齿啮合区与单齿啮合区之间不同的困油特点和卸荷措施,首先给出了双斜型卸荷槽的结构和形位设计;其次,由三维模型旋转面积的测量方法,得到一个困油周期内的卸荷面积,最后通过所建立的困油模型,进行双斜型、矩形卸荷槽下两类区域内的困油压力仿真。结果表明:双斜型较矩形能大幅提升卸荷面积,其中,双区的最大卸荷面积提升1.17倍,单区提升11.7倍;最大困油压力峰值,双区降低46.2%,对排油压力仅增加4.3%;单区则降低60.2%和仅增加1.6%,可视为无困油现象;双斜型两侧的型线轮廓,均由5个直线段和3个?2.0mm圆弧段组成,结构简单、易加工等。为卸荷槽创新提供一种新的途径。
外啮合斜齿轮泵内部流场仿真与分析
为捕捉外啮合斜齿轮泵在高速旋转过程中内部流场瞬时变化情况,采用FLUENT动网格技术,对某型号斜齿轮泵内部流场进行了三维仿真计算.这样我们就得到斜齿轮泵在工作过程中内部瞬态压力场和速度场的分布情况.从仿真结果可以看到,两齿轮在啮合过程中,困油压力可以升高到工作压力的数倍,油液在齿轮啮合处被高速挤出,高压腔油液经齿顶圆径向间隙向低压腔泄漏.该计算结果为外啮合斜齿轮泵的研究和优化设计提供了理论依据.