斜撑离合器楔块外凸轮修形及其性能分析
提出了一种斜撑离合器楔块外凸轮修形方法,研究了超越状态和楔合状态下外凸轮修形后的楔块受力计算方法,分析了不同外凸轮修形曲线对楔块接触性能的影响。结果表明,楔块外凸轮修形能够在不影响楔块楔合性能的情况下减小超越状态下斜撑离合器楔块接触应力,有助于减少超越磨损。
一种斜撑离合器正向设计的校核方法与评判策略
提出了一种斜撑离合器正向设计的校核方法与评判策略,用于离合器服役性能的预测与评判。将离合器楔块与内外轴作为整体研究对象,提炼出综合应力、接触应力、楔角、升程百分比4项指标,并推导出对应的校核计算模型;进一步地,归纳出离合器正向设计优劣的综合评判策略。以J8331型号的离合器为例,从理论解析与有限元仿真两方面入手,对比验证了本文方法与策略的可行性,并据此得出载荷与上述指标之间呈非线性正相关性的动态规律。
考虑浮动量的同轴面齿轮传动系统动态均载性能研究
基于集中质量法建立了同轴面齿轮传动系统弯扭耦合动力学模型,研究了输入齿轮浮动量计算方法,修正了系统动力学方程,定义了系统动态均载系数计算方法,通过算例,开展了输入齿轮浮动量对系统均载性能的影响分析。结果表明,输入齿轮浮动量的变化影响系统动态均载性能;两输入齿轮均浮动时,系统动态均载性能最好;某一输入齿轮单独浮动时,系统动态均载性能最差。在同轴面齿轮试验台上开展均载试验研究,验证了某一支撑结构下两输入齿轮均浮动时均载性能的可靠性。
超越离合器研究现状及发展趋势分析
超越离合器一般具有超越和接合两种状态,是实现传动系统工况转换的核心部件。随着机械传动系统技术的发展,对超越离合器的工况要求越来越高。为了便于深入系统地开展超越离合器研究,满足新时代高端装备发展需求,通过梳理啮合式、摩擦式两种不同类型的超越离合器相关文献,总结了近年来超越离合器的研究热点、难点,并分析了超越离合器的未来发展方向,为后续超越离合器研究的开展提供了依据和借鉴。
两级星型齿轮传动系统低振动齿廓修形设计研究
针对两级星型齿轮传动系统,为降低系统振动、提升系统性能,开展齿廓修形方法和动力学建模研究。并基于此开展修形参数对系统动态啮合力齿频幅值的影响规律研究,确定齿廓修形参数设计范围。获得齿廓修形参数的非劣解集合,以内外齿轮副啮合频率对应的幅值最小为目标,确定系统齿廓修形参数。开展未修形与修形齿轮系统的动态响应分析,验证了系统齿廓修形设计方法的可行性。结果表明,合理的修形参数可以有效地减小系统的振动。
小样本磨削表面粗糙度测量方法研究
基于机器视觉的表面粗糙度测量方法主要通过图像特征信息与粗糙度的关联指标建立预测模型,但是样本量不足往往难以训练出有效的模型,导致测量准确率较低。针对以上问题,提出一种小样本磨削表面粗糙度测量方法。建立图像采集系统,采集不同粗糙度等级磨削表面图像作为原始样本;通过虚拟样本生成算法扩充样本量,采用灰度共生矩阵提取样本纹理特征;最后,通过神经网络建立预测模型。试验结果表明:样本量扩充后,表面粗糙度测量的准确率从80.4%提升到97.2%,证明了此方法的可行性,为小样本磨削表面粗糙度在机检测提供理论基础。
面齿轮轮齿刚度的计算方法及其影响因素分析
面齿轮轮齿刚度是面齿轮传动啮合刚度的基本组成,其计算方法的解决可为面齿轮啮合刚度以及后续动力学分析奠定必要的理论基础。基于Buckingham的观点,将面齿轮齿形看作是由沿齿长方向一系列变压力角的齿条组成,得到沿轴向和径向都为变截面的面齿轮简化齿形,获得了面齿轮轮齿啮合变形的计算公式,求解出了面齿轮轮齿刚度;并通过与有限元法进行对比分析,验证了面齿轮轮齿刚度计算方法的可行性;分析了面齿轮模数、压力角以及齿宽对其轮齿刚度的影响。结果表明面齿轮模数越大,其轮齿刚度沿齿根到齿顶的变化率越小;面齿轮压力角越大,其轮齿刚度越大,但沿齿根到齿顶的变化率基本不变;面齿轮齿宽越大,其轮齿刚度越大,且沿齿根到齿顶的变化率较之压力角的影响大。
面齿轮传动的承载接触分析
为了促进高性能面齿轮传动技术的发展,对点接触面齿轮传动进行承载接触分析。建立了点接触面齿轮传动的坐标系,推导了传动中接触点方程,实现了传动中面齿轮上接触点位置的仿真。利用曲面上任意点处主曲率的计算方法,得到了传动中圆柱齿轮和面齿轮上接触点处主曲率的变化规律。根据布希涅斯克问题的求解方法,给出了传动中面齿轮上接触区域的椭圆长、短半径、中心最大变形量、最大压应力以及载荷分布的方程,分析了接触中心最大压应力的变化规律,实现了接触斑点的可视化仿真。
齿宽系数对面齿轮齿根弯曲应力的影响
根据面齿轮传动的啮合原理,给出面齿轮齿根弯曲应力计算的三齿几何模型。采用正交试验法,确定面齿轮的计算参数。通过有限元分析,计算面齿轮齿根弯曲应力;将面齿轮当量成齿条,分析弯曲应力比值与齿宽系数的关系,获得面齿轮齿根弯曲应力的拟合计算公式。研究结果表明面齿轮最大弯曲应力位于齿根部位;沿齿根最大弯曲应力的齿宽方向,其弯曲应力近似呈抛物线分布;面齿轮弯曲应力的比值与齿宽系数近似呈线性分布,平均相对误差为6.17%;齿根弯曲应力对面齿轮的齿宽系数和齿数较敏感,在使用本文给出的拟合计算公式,且当面齿轮齿数小于90且齿宽系数小于3时,计算结果可适当放大5%,以减小齿宽系数和齿面曲率对齿根弯曲应力的影响。
基于分形理论的粗糙齿面齿轮动力学研究
为研究齿面微观误差对齿轮动力学特性的影响,基于分形理论对粗糙表面进行分形表征。结合时变啮合刚度、静态传递误差以及齿面摩擦等因素,建立计及粗糙齿面的齿轮非线性动力学模型,研究齿面粗糙度、齿面摩擦及工况对齿轮动力学特性的影响。结果表明:粗糙度增大时,齿轮传动系统的动态传递误差增大,振动稳定性降低,动态性能逐步恶化;齿面摩擦会使齿轮副的动态传递误差和振动位移都增大,且摩擦对垂直啮合线方向的振动特性影响更明显;粗糙度对
-
共1页/10条