碧波液压网 欢迎你,游客。 登录 注册

小样本磨削表面粗糙度测量方法研究

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

信息

资料大小
5.20 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数

简介

基于机器视觉的表面粗糙度测量方法主要通过图像特征信息与粗糙度的关联指标建立预测模型,但是样本量不足往往难以训练出有效的模型,导致测量准确率较低。针对以上问题,提出一种小样本磨削表面粗糙度测量方法。建立图像采集系统,采集不同粗糙度等级磨削表面图像作为原始样本;通过虚拟样本生成算法扩充样本量,采用灰度共生矩阵提取样本纹理特征;最后,通过神经网络建立预测模型。试验结果表明:样本量扩充后,表面粗糙度测量的准确率从80.4%提升到97.2%,证明了此方法的可行性,为小样本磨削表面粗糙度在机检测提供理论基础。
标签: 神经网络
点赞   收藏

相关论文

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论