碧波液压网 欢迎你,游客。 登录 注册

基于EEMD和平滑能量算子解调的轴向柱塞泵故障特征提取

作者: 田海雷 李洪儒 许葆华 来源:海军工程大学学报 日期: 2020-04-07 人气:91
基于EEMD和平滑能量算子解调的轴向柱塞泵故障特征提取
针对液压泵振动信号出现的调制现象,提出基于集总平均经验模态分解(ensembleempiricalmodedecomposition,EEMD)和平滑能量算子解调相结合的方法进行解调,并运用小波包分解频带能量的方法提取了轴向柱塞泵的特征向量。首先,利用EEMD将采集到的柱塞泵振动加速度信号分解成若干个平稳的本征模函数(IMF);然后,选取包含主要故障信息的本征模函数通过能量算子解调的方法进行包络解调,从而提取振动信号在高频谐振带的包络成分;最后,运用小波包理论提取各频带的能量作为特征向量。结果表明:基于EEMD和平滑能量算子解调的方法能有效地避免模态混叠现象,提取振动信号的包络成分,成功获得各种状态下的特征向量。

基于LPP与VPMCD的液压泵故障模式识别

作者: 王余奎 李洪儒 许葆华 来源:中国机械工程 日期: 2020-02-26 人气:189
基于LPP与VPMCD的液压泵故障模式识别
针对液压泵振动信号复杂且难以提取有效特征量的问题,提出一种基于局部保留投影(LPP)算法的故障特征提取方法。采用集总经验模态分解(EEMD)法对液压泵振动信号进行分解,从得到的内禀模态分量(IMF)中选取敏感分量,对敏感分量进行分析并从中提取液压泵故障高维特征向量,利用局部保留投影法对高维特征向量进行融合降维,提取隐藏在高维特征空间中的故障本质信息,即敏感特征向量。基于变量预测模型的模式识别(VPMCD)算法实现模式识别的良好性能,提出采用VPMCD算法实现液压泵故障模式识别。基于提取的敏感特征集,建立各状态敏感特征的变量预测模型,进而实现液压泵的故障识别,实测液压泵振动信号分析结果验证了所提出液压泵故障模式识别方法的有效性。通过对比分析验证了所提出方法的良好性能。

基于小波包-混沌支持向量机的液压泵压力信号预测

作者: 田海雷 李洪儒 许葆华 来源:中国机械工程 日期: 2020-02-26 人气:169
基于小波包-混沌支持向量机的液压泵压力信号预测
针对液压泵压力信号呈现的非线性、非平稳的特性,提出一种将小波包分析、相空间重构理论与支持向量机(SVM)相结合的预测方法,实现液压泵压力信号监测数据的建模及预测。首先将采集到的压力信号通过小波包进行分解,将分解得到的各个分量进行重构,其次对重构后的每一个分量通过混沌支持向量机预测模型进行预测,最后对各预测值进行合成。试验数据表明,该方法能够有效地预测液压泵压力信号的变化趋势,具有较高的预测精度,可有效地应用于系统的状态监测和故障预测。

基于敏感分量融合的液压泵退化特征提取方法

作者: 孙健 李洪儒 田再克 来源:仪器仪表学报 日期: 2020-02-25 人气:111
基于敏感分量融合的液压泵退化特征提取方法
液压泵退化特征提取是实现故障预测的关键环节。在液压泵性能退化过程中,其振动信号复杂度高、非线性强,难以有效地提取退化特征,为此,本文提出一种基于敏感分量融合的退化特征提取方法。采用改进局部特征尺度分解(ILCD)方法对振动信号进行分解,并利用贝叶斯信息准则与所构建的敏感因子,对内禀尺度分量进行筛选,以减少干扰分量的影响,得到敏感分量,有效抓取特征信息;在此基础上,引入离散余弦变换代替传统复合谱分析中的傅里叶变换,提出离散余弦变换一复合谱(DCS)算法,以解决信息遗漏问题,并利用DCS对敏感分量进行融合,提取复合谱熵作为退化特征,以提高对退化过程的表征能力;最后,通过对液压泵性能退化试验实测振动信号的应用分析,验证了该方法的有效性。

基于多尺度排列熵的液压泵故障识别

作者: 王余奎 李洪儒 叶鹏 来源:中国机械工程 日期: 2020-02-24 人气:163
基于多尺度排列熵的液压泵故障识别
将排列熵引入液压泵的故障识别中,分析了排列熵作为液压泵故障特征指标的性能;采用互信息法和伪近邻法优选排列熵计算中的延迟时间和嵌入维数,基于优选参数得到了能够更好区分液压泵故障的排列熵。针对单尺度排列熵只能在单个尺度上衡量振动信号复杂度的不足,在对多尺度排列熵进行研究的基础上提出了一种综合多尺度排列熵熵值和排列熵变化趋势的指标——多尺度排列熵偏均值,对液压泵实测信号的分析结果验证了该指标作为液压泵故障特征的有效性和优越性。

基于形态非抽样融合与DCT高阶奇异熵的液压泵退化特征提取

作者: 孙健 李洪儒 王卫国 许葆华 来源:振动与冲击 日期: 2020-02-24 人气:206
基于形态非抽样融合与DCT高阶奇异熵的液压泵退化特征提取
针对轴向柱塞式液压泵性能退化中振动信号非线性强、退化特征提取困难等问题,提出基于形态非抽样融合与DCT(Discrete Cosine Transform)高阶奇异熵的退化特征提取方法。在一般框架下提出形态非抽样小波融合方法,通过构建特征能量因子筛选各分解层近似信号,据融合规则实现双通道振动信号融合重构、改善重构信号的特征信息;并利用DCT高阶谱分析法对融合信号进一步处理,通过奇异值分解分别计算Shannon、Tsallis奇异熵作为液压泵性能退化特征向量;用仿真信号及液压泵实测振动信号验证该方法的有效性。

基于改进MF-DFA的液压泵退化特征提取方法

作者: 田再克 李洪儒 孙健 许葆华 来源:振动.测试与诊断 日期: 2020-02-23 人气:131
基于改进MF-DFA的液压泵退化特征提取方法
针对液压泵振动信号通常具有非线性强和信噪比低的特点,提出了一种基于改进多重分形去趋势波动分析(multi-fractal detrended fluctuation analysis,简称MF-DFA)的液压泵性能退化特征提取方法。首先,引入滑动窗口技术改进传统MF-DFA方法在时间序列数据分割过程中存在的不足,提高了MF-DFA方法的计算精度;然后,利用改进的MF-DFA方法计算液压泵多重分形谱参数,分析了不同分形谱参数对液压泵退化状态的反映能力,选取奇异指数α0和多重分形谱宽度Δα作为退化特征量;最后,以液压泵不同退化状态下的实测数据为例验证了该算法的有效性。试验结果表明,该方法能够准确提取液压泵退化特征,提高了退化状态识别的准确率。

基于多尺度局部最大样本熵的液压泵故障特征提取

作者: 马济乔 李洪儒 许葆华 来源:液压与气动 日期: 2019-11-28 人气:75
基于多尺度局部最大样本熵的液压泵故障特征提取
提出了一种新的表征时间序列复杂度的方法——多尺度局部最大样本熵。多尺度局部最大样本熵不仅克服了样本熵只能在单一尺度上衡量时间序列复杂度的缺点,而且与多尺度熵相比,既提高了每个时间尺度上样本熵的精度,又抑制了振动信号中的噪声和干扰成分。通过对仿真信号的对比分析,验证了多尺度局部最大熵在处理振动信号上的优势,将其应用到液压泵振动信号的特征提取中,很好地区分出了液压泵的不同故障。

基于MLSE和可拓理论的液压泵故障模式识别

作者: 马济乔 李洪儒 许葆华 来源:机床与液压 日期: 2019-01-18 人气:201
基于MLSE和可拓理论的液压泵故障模式识别
提出了一种新的衡量时间序列复杂度的方法——多尺度局部最大样本熵(Multiscale Local-maximum Sample Entropy简称MLSE)与多尺度熵相比MLSE抑制了振动信号中的噪声和干扰成分同时又提高了每个时间尺度上样本熵的计算精度。将液压泵不同状态下的MLSE作为特征向量利用可拓理论进行故障模型识别并将其与另外两种方法进行对比结果表明该方法故障识别准确率最高、耗时最短验证了该方法的优越性。

基于EEMD-增强因子自适应的液压泵微弱故障特征提取

作者: 王余奎 李洪儒 许葆华 来源:机床与液压 日期: 2019-01-18 人气:213
基于EEMD-增强因子自适应的液压泵微弱故障特征提取
针对斜盘式轴向柱塞泵微弱故障特征难以提取的问题,提出了一种基于EEMD-增强因子自适应的液压泵微弱故障特征提取方法。对故障信号EEMD分解得到一组IMFs,采用增强因子作为各IMF权值合成信号以突出故障特征并抑制不相关成分;对合成信号EEMD分解,用敏感因子筛选出最能够表征故障信息的IMFs分量重构信号;对重构信号做Hil-bert变换求得包络谱,分析包络谱诊断出具体故障。仿真信号和液压泵实测信号的分析结果均很好地验证了该方法的有效性和优越性。
    共3页/26条