一体化电动液压动力单元内气泡分布及气泡分离方法的研究
针对一体化电动液压动力单元内气泡流动现象进行气泡流动观测试验,利用Fluent中的欧拉—欧拉多相流模型对其进行气液两相流三维数值计算。基于气泡流场解析结果和气液两相流的流动特性,提出了两种实现气泡快速分离的方案。研究发现气泡在液压电机泵壳体的外表面及上端吸油口腔体的内表面分布较多,气泡在主轴的外表面汇集。在油液流入油箱前,通过改变油液的流态形成旋转流或紊态流、延长流动路径,可以实现气泡从油液中快速分离的目的。
液压电机泵电机转子转速的数值分析
针对研制的11kW液压电机泵,通过理论计算与流场解析,并运用电磁仿真软件Ansoft中RMxprt模块对电机转子的转速进行数值分析.研究发现浸油负载导致液压电机泵浸油电机带载启动,造成的功率损失较大,随油温升高,该项损失会快速减小;转子鼠笼导体材料的电阻率对转速影响较大,额定压力下,紫铜鼠笼电机的转速能够提高81r/min,采用电阻率小的导体可有效提高其转速及电机泵总效率.
基于壳体的液压电机泵轻量化研究
为了进一步减小液压电机泵样机的质量,通过采用轻质材料以及合理减小结构尺寸的方法对液压电机泵壳体进行了轻量化设计,应用ANSYS软件对轻量化壳体的强度、刚度进行了分析,同时校核了钢铝连接中的螺栓强度。研究发现,液压电机泵壳体有较大的改进空间,采用6061铝合金材料及结构尺寸优化后,壳体能够满足强度、刚度的要求,且质量减小了70.1%,可见液压电机泵基于壳体的轻量化设计具有明显的效果。
液压柱塞泵双金属支承圈真空扩散焊技术研究
针对高压柱塞泵支撑圈在工作过程中所受到高剪切应力及高摩擦力严酷条件,开展了针对其应用特点的工艺制作方法技术攻关。通过真空扩散焊接技术,在真空或保护气氛下,要使被焊接的两个工件的表面达到原子间的距离并通过相互扩散达到彼此结合,则需要在高温度、高压力及一定的时间下保持接触。采用这种方法可以实现钢与铜或铜合金高精度、高强度地有效连接。通过试验,获得了材料扩散焊所需的温度及保温时间等参数,试件经过拉伸强度测试及配合柱塞泵性能测试,满足使用要求。
双金属支承圈扩散焊替代技术研究
航天高性能变量柱塞泵作为运载火箭伺服机构的动力源,为伺服机构动作提供充足可靠的高压油源,以实现对火箭发动机喷管的推力矢量控制,使火箭按照预定的轨迹和姿态飞行。变量柱塞泵作为伺服机构能源转换的关键元件,一旦发生故障,将直接影响伺服机构的功能实现。为了满足变量柱塞泵斜盘回程机构中配套的支承圈在高速、重载工况下对高强度及耐磨性的要求,制造时采用了铜/钢双金属材料,它兼顾了钢的高强度及铜的导热性优点。
航天高压高速天地功率分档变量柱塞泵建模与仿真
航天高压高速天地功率分档变量泵(简称分档变量泵)具有功率分档和恒压变量的特点,为了更加准确地分析其特性,得到优化改进的方向。介绍分析了其工作原理,推导数学模型,使用AMESim、MATLAB软件构建了整泵的联合仿真模型,对静态和动态性能进行了仿真,并与试验数据进行对比分析,得到了参数优化设计结果。该模型可为其他同类型泵的优化设计提供快速原型和理论支撑。仿真分析证明该型泵设计合理,功率分档和恒压变量功能可以正确实现,预升压角、阻尼孔直径需要进一步优化。
液压油箱内气泡流动观测及气泡分离方法
针对液压油箱内气泡流动的现象,搭建气泡流动可视化试验系统,观察回油管出口附近气泡的流入和液压泵吸油管处气泡的吸入过程,获得气泡分布规律.利用Fluent中的欧拉-欧拉多相流模型,对液压油箱内流场进行气液两相流三维数值计算.基于气泡流动可视化试验结果和气液两相流的流动特性,提出两种实现气泡快速分离的方案.研究表明:系统回油管中油液携带直径大小不同的气泡进入到油箱内,快速弥散于整个油箱油液中;较大气泡能够快速上浮、逸出液面,直径较小的气泡随液流被液压泵吸入;在油液流入油箱前,通过改变油液的流态,形成旋转流或紊态流,可以使气泡从油液中快速分离.
变转速液压电机泵中孔板离心泵的增压作用
液压电机泵主要是由电动机、孔板离心泵及主泵(高压叶片泵)集成为一体的新型液压动力单元,在主泵吸油腔前端设置孔板离心泵是利用其增压作用提高主泵进口压力,保证主泵充分吸油.建立液压电机泵中孔板离心泵的内部流场模型,进行不同转速条件下的流场仿真计算,分析转速对液压电机泵中孔板离心泵增压作用的影响.研究表明:孔板离心泵出口总压随着转速的上升不断增大,孔板离心泵出口(主泵吸油腔进口)总压最大值可以表征孔板离心泵对主泵的补油效果,当转速高于1 000 r/min以后,总压最大值快速升高并呈线性增加趋势,当转速上升至2 000 r/min时,总压最大值相对增大15.5倍.
基于一种双出轴伺服电机的高压低噪声伺服电机泵研究
基于双出轴伺服电机的高压低噪声伺服电机泵应用于安静型场合,为机电静压伺服机构提供液压能源。该伺服电机泵采用了“单个电机+两台螺杆泵”工作模式,通过驱动控制器控制伺服电机旋转方向和转速,进而实现每台螺杆泵“泵正转工况”和“马达反转工况”的切换以及泵输出流量大小的调节,从而控制伺服作动器运动方向以及速度大小,消除了因控制阀引起的机械噪声和流体噪声。通过Ansoft软件对伺服电机设计进行了仿真计算;通过试验验证,螺杆泵具有良好的静音效果,该伺服电机泵具有高可靠性、低噪声、结构紧凑、能源利用率高等特点,用以替代传统的液压泵站,可有效地降低工作时的噪声。
液压电机泵中孔板离心泵的增压效应
液压电机泵利用油流在壳体内的流动带走工作过程中产生的热量由此会增加主泵吸油阻力影响主泵充分吸油.研制出的液压电机泵通过在主泵前设置孔板离心泵以解决此矛盾通过对液压电机泵与同规格电机液压泵组的试验结果进行对比分析同时结合不同转速下液压电机泵内吸油流场的仿真计算结果获得转速对主泵吸油流场的影响规律.研究发现孔板离心泵可以明显促进主泵充分吸油孔板离心泵出口(主泵吸油腔进口)总压最大值随其转速升高呈近似线性增加的趋势与电动机液压泵组相比电机泵容积效率高1.25%左右.当孔板离心泵转速低于1 395 r/min后会对主泵吸油产生不利影响当输出压力升高至22 MPa时液压电机泵容积效率相对降低2.7%.总结给出增压效应的确切含义.
-
共1页/10条