傅里叶望远镜外场实验系统拼接主镜
提出了傅里叶望远镜外场实验系统拼接主镜支撑结构,详细介绍了各组件施工及安装过程.该主镜由61块六边形球面子镜拼接而成,高6 m,宽5.5 m,是我国目前用于望远镜系统中能量接收面积最大的拼接主镜.子镜采用模块化设计,互换性好且均可实现3个自由度的精密调整.支撑桁架采用分体结构设计,便于拆装和运输;地基采用混凝土浇筑预埋型钢构件,各分体组件由螺栓与地基联接为一个整体,保证结构整体刚度的同时,也满足系统对温度的适应性.通过实验验证:该主镜支撑结构稳定性优于0.075 mrad,子镜指向调整准确度优于0.05 mrad,对已安装的8块子镜进行共焦试验,光斑质心重合准确度小于20 mm,满足外场实验对拼接主镜的技术要求.
傅里叶望远镜外场实验与结果分析
为了分析外场环境因素对傅里叶望远镜成像质量的影响和验证成像过程不受下行链路大气扰动影响的特点,开展了傅里叶望远镜外场实验研究.外场实验在室内实验的发射光学系统的基础上增加了主镜、次镜和会聚透镜组对目标散射光进行3次会聚仿真实际系统的成像过程,同时将目标与主镜、主镜与次镜分别拉开100m距离验证成像系统不受下行链路大气扰动影响的特点.实验利用胶片打印的2种不同的卫星图片作为目标,获得了Strehl值分别为0.44、0.39的无大气扰动的外场重构图像和Strehl值分别为0.43、0.38的含大气扰动的外场重构图像.通过比较外场重构图像与室内重构图像的Strehl值,得出发射光学系统中光束的振动对成像有较大影响.分析发现无大气扰动外场重构图像与含大气扰动外场重构图像的Strehl值相近,从而验证傅里叶望远镜成像过程...
拼接镜主动光学共焦实验
为了实现对拼接镜的共焦调整,建立了拼接镜主动光学共焦实验系统。实验中,拼接镜由3块对边长300mm的正六边形子镜组成,子镜为球面,曲率半径为2000mm。采用Shack-Hartmann传感器进行共焦测量,用6个微位移平移台对两块子镜的离焦和倾斜进行调整。每个子镜对应Shack-Hartmann传感器的36个子孔径,用子孔径产生的像点位置偏移计算子镜之间的共焦误差。通过微位移平台调整,可控制子镜的轴向离焦误差优于1μm rms,倾斜误差在两维方向上均优于0.02″rms。实验表明,该方法适用于大型拼接镜面望远镜的共焦标定和实时调整。
球面拼接镜的相对曲率半径测量
为了实现对拼接镜子镜之间相对曲率半径的精确测量,提高各子镜曲率半径的匹配精度,提出了一种使用Shack-Hartmann传感器和高精度球径仪测量球面子镜相对曲率半径的新方法,并建立了一个实验系统。该方法首先使用共焦调整方法使各子镜共焦,用S-H传感器测量子镜的轴向离焦量,轴向调整压电陶瓷促动器,使由传感器测得的离焦量接近于0;最后,再对子镜进行一次共焦调整之后,使用高精度球径仪来测量各子镜之间的相对曲率半径差。实验采用的拼接镜由3块对边长300mm的正六边形子镜组成,子镜为球面,设计曲率半径为2000mm。分析测试结果表明,该方法测得的球面拼接子镜的相对曲率半径精度约为1μm,该方法表明适用于大型球面拼接镜面望远镜各子镜相对曲率半径的检测。
长悬臂三坐标测量机测端抖动实时修正系统
长悬臂三坐标测量机是用来在线测量工字钢结晶器内腔尺寸的,测量运行过程中,由于长悬臂及测杆的弱刚性和各轴传导结构的非理想性,造成测杆端部的空间抖动,直接影响测量精度。论文结合有限元分析了产生抖动的原因,基于面阵CCD和图像处理技术,建立检测系统并建模,实时检测测头触发瞬间测杆端部在空间3个方向的抖动位移,在VC++6.0环境下编写软件,通过软件计算实时修正抖动对测量精度的影响。并通过试验验证了该系统的实用性。
相位差法用于拼接镜piston相位检测的实验研究
为了在实验的基础上研究相位差法在拼接镜piston波前探测中的性能,本文在球面镜上放置两个合成口径分别为200 mm和50 mm的拼接形光阑,进行了模拟拼接实验。依据相位差法的基本原理,通过优化计算可得piston误差分别小于25 nm和1 nm,以此验证了相位差法在拼接镜piston波前探测中的能力,并为将相位差法用于实际拼接镜系统波前探测打下了一定的基础。
补偿器法检测非球面过程中易出现的误区
补偿器法是测量非球面反射镜面形误差的一种重要的方法。在检测过程中,各个元件之间的调整会带来初级像差,这是影响最终检测结果的一个关键因素。本文以一个1m口径的非球面反射镜为例,首先详述了其面形误差检测的设计和测量过程,然后分析了各个元件的调整会带来相应的初级像差,随后给出了实际检测过程中出现的误区,并对其进行了分析和讨论,结合实际的检测过程得出了相应的判断和消除的方法。最后,分别对300mm、700mm口径非球面反射镜与本文1m非球面镜的检测结果进行了比较,证明了该误区会使最后的检测数据发生变化,从而使最后的检测结果失真,并验证了先判别后消除方法的可靠性。最后利用正确的方法,检测得到1m口径非球面被测镜的RMS面形误差为0.038λ,满足指标要求。
大口径主焦点式光学系统轻量化结构设计、分析与试验
针对主焦点式光学系统的特点,对某Ф00mm极轴式望远镜光机结构部分采用模块化设计,分别对主镜室组件、连接镜筒和校正镜镜筒和全系统结构进行了有限元分析与优化,使系统总重不超过700kg,系统弯沉不超过4"。利用平行光管检测系统像质表明,系统80%能力集中度在4×4个像元以内,系统像质理想,符合设计要求,说明该结构设计合理,同时模块化的设计使装调方便简单。
大口径望远镜主镜保护罩电控系统设计
主镜保护罩是大口径望远镜的重要部件之一。针对一个1m口径的望远镜,设计了一种花瓣式主镜保护罩,其电控系统主要由上位机、RS485总线、步进电机和电机驱动控制器组成,形成一个分布式控制系统。上位机通过RS485总线向4个电机驱动控制器发送操作指令,驱动控制器根据指令内容及限位开关状态来控制步进电机转动和停止,从而实现保护罩的开启和关闭。实际应用表明,该系统工作可靠,运行平稳,有效避免了灰尘、异物等对望远镜主镜的污染及损伤,达到了对主镜的保护作用。
-
共1页/9条