基于完备总体经验模态分解和模糊熵结合的液压泵退化特征提取方法
针对液压泵振动信号具有非线性、非平稳性,以及信噪比低等特点,提出了基于完备总体经验模态分解和模糊熵结合的液压泵性能退化特征提取方法。首先,使用完备总体经验模态分解方法对液压泵振动信号进行分解,得到若干个固有模态函数分量。其次,求取各个分量与原始信号的相关性,选取相关性较高的前几个分量作为有效分量并求其模糊熵,实现液压泵的退化特征提取,形成特征向量。最后,以液压泵不同退化状态下的实测数据为例,使用基于变量预测模型的模式识别方法对提取的特征向量进行验证。实验结果表明,该液压泵退化特征提取方法具有较高的精度,使退化状态识别的准确率提高到了100%。
基于AdaBoost集成回归模型的液压锻锤磨损状态识别
选择液压锻锤作为测试对象,再以多项式拟合和集成算法结合的过程,开发出了锻锤磨损阶段建立回归模型的方法。再把AdaBoost集成算法也加入统一回归模型内,从而降低磨损过程中的回归模型预测误差。研究结果表明给出了基于AdaBoost集成回归模型的液压锻锤磨损状态识别表达式。平稳磨损阶段所需时间最短,最长的为急剧磨损阶段。该研究为进一步识别锻锤磨损状态提供了一定的理论支撑作用,该研究可以拓宽到其它的磨损领域,具有很好的实际应用价值。
鱼群优化BP神经网络的刀具磨损状态识别
针对BP神经网络模型在刀具监控中收敛速度慢容易出现局部极小化问题,提出一种基于鱼群算法(AFSA)的BP神经网络优化算法。采集振动钻孔的声发射(AE)信号,使用小波包算法对数据进行降噪和特征提取。使用鱼群优化算法(AFSA)对BP神经网络预测模型进行优化,使用优化后的模型对测试集数据进行模式识别,对比各模型识别精度。结果表明使用鱼群优化后的算法(AF-BP)模型能够降低神经网络陷入局部极小化的情况,提高神经网络对刀具磨损的识别精度。
基于电参量信息融合的液压系统状态识别技术
以液压系统运行状态在线监测、故障诊断以及功率优化控制为研究目标,提出将电动机三相交流电源的电压、电流信号用李萨如图产生单相及三相信息融合方法。利用机电动力学建立交流电动机驱动液压系统的动态功率平衡方程,分析电、机、液能量的转换和耦合过程,在此基础上提出用三相电气参量提供的幅值、相位、相间和相序信息绘制单相和三相李萨如动态图形,由数学分析推导出李萨如图形面积、外接矩形、摆动角度等特征量与交流电功率之间的函数关系,通过计算李萨如图特征量的变化实现对液压系统运行状态、运行工况以及功率匹配情况进行在线监测,形成基于电参量信息融合的液压系统运行状态识别技术。研究结果表明,单相李萨如图形面积可线性表示液压系统负载功率的在线状态,其外接矩形面积表示电源负荷状态,由此构成的功率圆可以...
基于声发射时频分析与卷积神经网络的液膜密封摩擦状态识别
针对液膜密封状态监测领域无损监测开发不足、信号特征评估困难以及摩擦状态判别智能化特性缺乏的问题,提出一种基于声发射时频分析与卷积神经网络的液膜密封摩擦状态识别方法。该方法将声发射无损监测技术应用于液膜密封的摩擦状态监测,卷积神经网络作为液膜密封摩擦状态自主决策的实现手段,声发射信号的时频信息作为卷积神经网络的特征输入,分析短时傅立叶变换、S变换以及小波变换3种时频分析方法对卷积神经网络识别性能的影响。结果表明:对于液膜密封的声发射信号,3种时频分析方法与卷积神经网络结合的优选顺序为:短时傅立叶变换、S变换、小波变换;基于声发射时频分析与卷积神经网络的液膜密封摩擦状态识别方法准确率较高,相比其他识别方法取得了较好的识别效果。
基于VMD的螺栓松动状态识别
针对螺栓出现松动故障信号产生非线性、非平稳的现象,提出一种基于VMD与LSSVM模型相结合的螺栓松动状态识别方法。搭建螺栓松动实验平台采集螺栓松动状态下4种工况的振动信号;利用VMD分解对螺栓松动状态各个工况下的振动信号进行分解,并计算VMD分解后各模态分量的能量熵,最后以各工况下VMD分解的各模态分量能量熵为特征构造特征向量矩阵,通过LSSVM模型进行训练与状态识别。实验结果表明:该方法可以有效的识别出的螺栓松动状态,并通过与EMD-LSSVM模型进行对比,验证了该方法用于螺栓松动状态识别的有效性、可行性与相较其EMD分解方法的优越性。
基于流场分析的液压泵磨损退化研究
轴向柱塞泵是液压系统的动力元件,其健康状态影响着整个液压系统的性能。磨损是轴向柱塞泵典型的渐进性故障,因此该文针对轴向,在磨损加速寿命实验的基础上,提出了一种基于流场分析轴向柱塞泵磨损退化状态识别方法。首先,对轴向柱塞泵配流副的磨损泄漏机理进行理论分析,通过有限元法计算得到配流副油膜厚度,将其作为柱塞泵内部流场模型的边界条件;其次,采用动态网格技术对轴向柱塞泵内部流场进行仿真模拟,从不同压力、转速、磨损间隙这三个角度,对柱塞泵性能退化进行仿真分析;最后,通过实验对仿真结果进行了验证。结果表明,该方法能够识别六种被试样本的磨损退化状态。研究结果不仅为磨损退化的研究提供了解决方案同时也为柱塞泵的预测性维护提供了强有力的技术支持。
基于Dirichlet过程混合模型的滚动轴承运行状态识别
针对滚动轴承的运行状态识别问题,利用典型D P混合模型良好的聚类特性,提出了基于DPMM的滚动轴承运行状态识别算法,并推导了算法聚类的详细步骤。利用轴承状态监测数据进行了验证和分析,结果表明DPMM算法不依赖于训练样本,模型结构能够随着观测数据的变化实现自适应变化和动态调整,自动识别轴承的运行状态数;同时,识别结果不依赖于DPMM算法初始参数的选择,具有较强的稳定性和适应性。
基于DHMM的机械密封端面膜厚识别技术的研究
维持机械密封端面间一定的膜厚是保证机械密封正常运行的关键,利用声发射技术监测得到的反映机械密封膜厚状态的信号往往信噪比很低,对其工作状态进行分类存在一定的困难。提出一种基于声发射信号利用总体经验模式分解(EEMD)和离散隐马尔可夫模型(DHMM)识别的机械密封端面膜厚识别技术。首先对声发射信号进行分帧处理,运用EEMD方法对信号进行时频分析,对分解出的子频分量分别提取时域和频域特征,再由核主成分分析法对特征参数进行优化降维,利用简化后的特征参数矢量训练各个机械密封端面膜厚状态的DHMM,最后由训练好的DHMM实现机械密封端面膜厚状态的识别,从而实现机械密封端面接触状态的监测。试验研究表明:该方法能够快速有效地判断出膜厚状态,并且需要的训练样本少,训练速度快,对实现机械密封端面接触状态的智能化在线监测具有重...
基于最小二乘支持向量分类机的齿轮泵故障诊断研究
为了精确诊断齿轮泵故障,提出了基于马氏距离的传感器通道选择方法,采用多项式最小二乘法去除采集振动信号的趋势项和五点三次平滑法对信号进行平滑预处理,而后分别提取基于峭度的时域特征、小波包能量特征和经验模态分解特征,运用最小二乘支持向量机进行状态识别。以CB-KP63齿轮泵为例进行应用,结果表明传感器1通道识别率达到85%;采集振动信号趋势项干扰较弱,平滑处理效果较好;以EMD提取各频带能量作为特征参数的LS-SVC状态识别方法识别率达到90%以上,最终证明论文提出的方法有效可行。