太阳能1.x级溴化锂吸收式制冷循环性能分析
介绍了一种适合于太阳能和其他低温热源利用的新型1.x级溴化锂吸收式制冷循环.通过编制计算机程序模拟计算表明循环热力系数和面积单耗都随循环中间压力升高而增大,且达到一定数值时循环将不能继续;冷却水先进入冷凝器的串联流程优于并联流程;随着热水或冷媒水温度的降低或冷却水温度的升高,溴冷机循环系统的热力系数、面积单耗等经济性指标都变差,但在现有太阳能集热器能提供的热水温度范围内,1.x级循环的性能指标明显高于两级循环.
太阳能相变蓄热应用于吸收式制冷的研究
介绍了一种将太阳能相变蓄热技术应用于两级吸收式制冷的新型空调系统,简要分析了该系统的装置结构、工作原理和使用优点。对相变蓄热装置放热过程中放热盘管出水温度随放热时问的变化关系进行了实验测量,并对两级吸收式制冷系统效率进行了分析。通过研究可知,该太阳能空调系统有效解决了以往系统不稳定性和间断性问题;太阳能相变蓄热装置具有体积小、蓄热量大、放热速率大、连续放热温度均匀、便于控制热源加热温度等特点,适合储存太阳能并为吸收式制冷系统提供加热热源。综合考虑系统设备简单,加工要求低的制造特点,所以吸收式制冷以太阳能等低品位热源驱动有着良好的发展前景。
以水-溴化锂溶液为工质的制冷/制热潜能储存系统特性研究
详细介绍了以水-溴化锂为工作介质的制冷/制热潜能储存系统的工作原理,并根据循环流程及循环特点给出了循环热力计算数学模型,最后结合潜能储存循环计算结果对循环特性做出了详细分析. 结果表明该系统可于较高储能密度下运行,且有较高性能系数,基于水在0 ℃以下结冰的现象,以水-溴化锂为工质的潜能储存系统比较适用于空调系统. 当有低温热源时,储存的潜能还可以被转换成热能,或潜能被转换成冷能的同时还可以产生热能,这是传统的蓄能技术所不具有的. 由于潜能储存系统工作循环的非连续性及采用溶晶装置及晶/液分离装置,溴化锂溶液的结晶问题可以被解决,故此循环的溶液浓度差大,蓄能密度高,是冰蓄能密度的3倍.
低温热源驱动的二级吸附冷冻循环实验研究与性能分析
在冷冻应用方面,传统的吸附式制冷工质对在热源温度低于90℃、冷凝温度高于25℃的条件下,很难实现-10℃以下的冷冻。为了实现100℃以下的太阳能或废热利用,这里提出了二级吸附式制冷循环,建立了性能测试实验台。采用CaCl2-BaCl2-NH3作为工质对,利用85℃热源驱动,测试不同蒸发温度与冷凝温度下吸附剂的吸附与解吸性能。结果表明,二级吸附式制冷能够实现-20℃下的冷量输出,同时,冷却水温度为25℃时,氯化钙的循环吸附量、二级吸附式制冷COP与SCP分别为0.598kg/kg,0.24,106.6W/kg。
采用SrCI2-NH4CI-NH3工质对的二级吸附式冷冻循环性能
吸附式制冷是一种绿色环保节能的制冷技术,在低于100℃的低品位热能如废热能、太阳能等的利用方面具有广阔的发展前景。为了能够利用这部分的能源,提出了由吸附制冷过程与再吸附过程组成的二级吸附式制冷循环。采用SrCl2NH4c1-NH4作为工质对,测试不同蒸发温度与冷却温度下吸附剂的吸附与解吸性能。实验测试结果表明:当热源温度为70℃时,二级吸附式制冷也能够实现-25℃下的冷量输出。在测试工况下,氯化锶的最大吸附量达到了理论吸附量的94%。80℃热源、25℃冷源以及-25℃制冷条件下二级吸附式制冷循环的COP和SCP达到了0.250与160Wkg。这个数值与CaCl2BaCl2-NH3两级冷冻在85℃驱动热源以及同等的冷源与制冷温度条件下的数据相对比,驱动热源需求降低了5℃,COP提高了4%,SCP提高了lO%以上。
CaCl2-BaCl2-NH3二级吸附式制冷系统及其制冷性能与仿真
在低于100°C热源、高于30°C冷凝温度的条件下,为了获得-15°C的冷冻工况,采用二级解吸过程设计了氯化钙/氯化钡吸附氨的吸附制冷系统,并对氯化钙/氯化钡工质对的吸附性能参数进行测试,由其性能数据拟合而得到吸附与解吸曲线、耦合吸附与解吸方程和传热方程,并建立系统模型进行仿真.结果表明,该系统可以利用85°C的低温热源,在30°C的冷凝温度条件下获得-15°C的制冷温度,并达到2.62 kW的制冷功率.
低温热源驱动的单效/三段(SE/TS)吸收式制冷循环
提出了一种新型吸收式制冷循环——单效三段(SE/TS)吸收式循环,详细阐述了该循环制冷机组的结构原理、热力循环,并根据热平衡推导出各设备热负荷计算式。通过计算机程序模拟计算,与单效循环机组进行了制冷性能的对比分析。结果表明,在热源温度相同时(80℃以下),采用单效三段式制冷循环时,相比单效循环,其制冷量、热力系数均有所提高,冷却水消耗量下降。
-
共1页/7条